Finite semifields with 74 elements

In this paper, a highly demanding computer-assisted classification of four-dimensional finite semifields over the field 𝔽7 is provided. The techniques considered to overcome the difficulties in the management of the large data processed are explained.

[1]  W. Kantor Finite semifields , 2005 .

[2]  José Ranilla,et al.  Determination of division algebras with 243 elements , 2010, Finite Fields Their Appl..

[3]  A. Adrian Albert,et al.  Generalized twisted fields. , 1961 .

[4]  Olga Polverino,et al.  Semifield planes of order q4 with kernel Fq2 and center Fq , 2006, Eur. J. Comb..

[5]  José Ranilla,et al.  Classification of semifields of order 64 , 2009 .

[6]  Leonard Eugene Dickson Linear algebras in which division is always uniquely possible , 1906 .

[7]  Ignacio F. Rúa,et al.  Symplectic spread-based generalized Kerdock codes , 2007, Des. Codes Cryptogr..

[8]  D. M. Clark Theory of Groups , 2012 .

[9]  M. Lavrauw,et al.  Finite Semifields and Galois Geometry ∗ , 2011 .

[10]  I. F. R'ua,et al.  New Semifield Planes of order 81 , 2008, 0803.0411.

[11]  Semifield Planes of Order 81 , 2008 .

[12]  Semifield planes of order p4 and kernel GF(p2) , 2005 .

[13]  Irvin Roy Hentzel,et al.  Primitivity of Finite semifields with 64 and 81 Elements , 2007, Int. J. Algebra Comput..

[14]  D. Knuth Finite semifields and projective planes , 1965 .

[15]  B. David Saunders,et al.  Efficient matrix rank computation with application to the study of strongly regular graphs , 2007, ISSAC '07.

[16]  José Ranilla,et al.  New advances in the computational exploration of semifields , 2011, Int. J. Comput. Math..

[17]  Qing Xiang,et al.  Pseudo-Paley graphs and skew Hadamard difference sets from presemifields , 2007, Des. Codes Cryptogr..

[18]  Minerva Cordero,et al.  A survey of finite semifields , 1999, Discret. Math..