Evolutionary topology optimization of hinge-free compliant mechanisms

This paper develops a bi-directional evolutionary structural optimization (BESO) method for the design of hinge-free compliant mechanisms. A new objective function is proposed to maximize the desirable displacement and preclude the formation of hinges simultaneously. Sensitivity numbers are derived according to the variation of the objective function with respect to the design variables. Based on the resulting sensitivity numbers, the BESO procedure is established by gradually removing and adding elements until an optimal topology is achieved. Several 2D and 3D examples are given to demonstrate the effectiveness of the proposed BESO method for the design of various hinge-free compliant mechanisms.

[1]  Liang Xu,et al.  Protein adsorption in two-dimensional electrochromatography packed with superporous and microporous cellulose beads , 2009 .

[2]  Larry L. Howell,et al.  A Loop-Closure Theory for the Analysis and Synthesis of Compliant Mechanisms , 1996 .

[3]  Y. Xie,et al.  A simple evolutionary procedure for structural optimization , 1993 .

[4]  Yi Min Xie,et al.  Evolutionary Structural Optimization , 1997 .

[5]  O. Sigmund,et al.  Stiffness design of geometrically nonlinear structures using topology optimization , 2000 .

[6]  Larry L. Howell,et al.  A Method for the Design of Compliant Mechanisms With Small-Length Flexural Pivots , 1994 .

[7]  A. Midha,et al.  A Compliance Number Concept for Compliant Mechanisms, and Type Synthesis , 1987 .

[8]  Salam Rahmatalla,et al.  Sparse monolithic compliant mechanisms using continuum structural topology optimization , 2005 .

[9]  Michael Yu Wang,et al.  Shape and topology optimization of compliant mechanisms using a parameterization level set method , 2007, J. Comput. Phys..

[10]  G. K. Ananthasuresh,et al.  On an optimal property of compliant topologies , 2000 .

[11]  Sridhar Kota,et al.  Design of Compliant Mechanisms: Applications to MEMS , 2001 .

[12]  Estrella Veguería,et al.  3D compliant mechanisms synthesis by a finite element addition procedure , 2010 .

[13]  Sridhar Kota,et al.  Topological Synthesis of Compliant Mechanisms Using Nonlinear Beam Elements , 2004 .

[14]  Sridhar Kota,et al.  Topological Synthesis of Compliant Mechanisms Using Linear Beam Elements* , 2000 .

[15]  Y. Xie,et al.  Bi-directional evolutionary topology optimization of continuum structures with one or multiple materials , 2009 .

[16]  Noboru Kikuchi,et al.  TOPOLOGY OPTIMIZATION OF COMPLIANT MECHANISMS USING THE HOMOGENIZATION METHOD , 1998 .

[17]  M. Bendsøe,et al.  Generating optimal topologies in structural design using a homogenization method , 1988 .

[18]  Estrella Veguería,et al.  A simple evolutionary topology optimization procedure for compliant mechanism design , 2007 .

[19]  Yi Min Xie,et al.  Evolutionary Topology Optimization of Continuum Structures: Methods and Applications , 2010 .

[20]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid , 2012 .

[21]  M. Zhou,et al.  The COC algorithm, Part II: Topological, geometrical and generalized shape optimization , 1991 .

[22]  Ole Sigmund,et al.  On the Design of Compliant Mechanisms Using Topology Optimization , 1997 .

[23]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[24]  Masataka Yoshimura,et al.  An innovative design method for compliant mechanisms combining structural optimisations and designer creativity , 2009 .

[25]  George I. N. Rozvany,et al.  Layout Optimization of Structures , 1995 .

[26]  Michael Yu Wang,et al.  Mechanical and geometric advantages in compliant mechanism optimization , 2009 .

[27]  Y. Xie,et al.  Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method , 2007 .