Backfitting versus profiling in general criterion functions

We study the backfitting and profile methods for general criterion functions that depend on a parameter of interest beta and a nuisance function theta. We show that when different amounts of smoothing are employed for each method to estimate the function theta, the two estimation procedures produce estimators of beta with the same limiting distributions, even when the criterion functions are non-smooth in beta and/or theta. The results are applied to a partially linear median regression model and a change point model, both examples of non-smooth criterion functions.

[1]  W. Wong,et al.  Profile Likelihood and Conditionally Parametric Models , 1992 .

[2]  M. Akritas,et al.  Non‐parametric Estimation of the Residual Distribution , 2001 .

[3]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[4]  Enno Mammen,et al.  The Existence and Asymptotic Properties of a Backfitting Projection Algorithm Under Weak Conditions , 1999 .

[5]  Matt P. Wand,et al.  A Central Limit Theorem for Local Polynomial Backfitting Estimators , 1999 .

[6]  Jianqing Fan,et al.  Generalized Partially Linear Single-Index Models , 1997 .

[7]  Xiaohong Chen,et al.  Estimation of Semiparametric Models When the Criterion Function is Not Smooth , 2002 .

[8]  Probal Chaudhuri,et al.  Nonparametric Estimates of Regression Quantiles and Their Local Bahadur Representation , 1991 .

[9]  A. W. van der Vaart,et al.  On Profile Likelihood , 2000 .

[10]  David Ruppert,et al.  Fitting a Bivariate Additive Model by Local Polynomial Regression , 1997 .

[11]  L Roberts,et al.  Dioxin risks revisited. , 1991, Science.

[12]  David Ruppert,et al.  A Root-n Consistent Backfitting Estimator for Semiparametric Additive Modeling , 1999 .

[13]  Jean D. Opsomer,et al.  Asymptotic Properties of Backfitting Estimators , 2000 .

[14]  R. Tibshirani,et al.  Generalized Additive Models , 1991 .

[15]  P. Feder On Asymptotic Distribution Theory in Segmented Regression Problems-- Identified Case , 1975 .

[16]  R. Carroll,et al.  Profile‐kernel versus backfitting in the partially linear models for longitudinal/clustered data , 2004 .

[17]  R. Tibshirani,et al.  Linear Smoothers and Additive Models , 1989 .

[18]  T. Severini,et al.  Quasi-Likelihood Estimation in Semiparametric Models , 1994 .

[19]  J. Rice Convergence rates for partially splined models , 1986 .