Dual versus primal-dual interior-point methods for linear and conic programming

We observe a curious property of dual versus primal-dual path-following interior-point methods when applied to unbounded linear or conic programming problems in dual form. While primal-dual methods can be viewed as implicitly following a central path to detect primal infeasibility and dual unboundedness, dual methods can sometimes implicitly move away from the analytic center of the set of infeasibility/unboundedness detectors.

[1]  M. Todd Detecting Infeasibility in Infeasible-Interior-Point Methods for Optimization , 2003 .

[2]  Endre Süli,et al.  Foundations of computational mathematics: Minneapolis, 2002 , 2004 .

[3]  Kim-Chuan Toh,et al.  Solving semidefinite-quadratic-linear programs using SDPT3 , 2003, Math. Program..

[4]  Xiong Zhang,et al.  Solving Large-Scale Sparse Semidefinite Programs for Combinatorial Optimization , 1999, SIAM J. Optim..

[5]  Osman Güler,et al.  Barrier Functions in Interior Point Methods , 1996, Math. Oper. Res..

[6]  Mauricio G. C. Resende,et al.  Data Structures and Programming Techniques for the Implementation of Karmarkar's Algorithm , 1989, INFORMS J. Comput..

[7]  James Renegar,et al.  A polynomial-time algorithm, based on Newton's method, for linear programming , 1988, Math. Program..

[8]  Stephen J. Wright Primal-Dual Interior-Point Methods , 1997, Other Titles in Applied Mathematics.

[9]  C. C. Gonzaga,et al.  An (O√(n) L)-Iteration Large-Step Primal-Dual Affine Algorithm for Linear Programming , 1992, SIAM J. Optim..

[10]  Yinyu Ye,et al.  Interior point algorithms: theory and analysis , 1997 .

[11]  Jean-Philippe Vial,et al.  Theory and algorithms for linear optimization - an interior point approach , 1998, Wiley-Interscience series in discrete mathematics and optimization.

[12]  Clóvis C. Gonzaga,et al.  Path-Following Methods for Linear Programming , 1992, SIAM Rev..

[13]  M. J. Todd Foundations of Computational Mathematics: Minneapolis, 2002: Detecting Infeasibility , 2004 .