Lattice-Based Volumetric Global Illumination

We describe a novel volumetric global illumination framework based on the face-centered cubic (FCC) lattice. An FCC lattice has important advantages over a Cartesian lattice. It has higher packing density in the frequency domain, which translates to better sampling efficiency. Furthermore, it has the maximal possible kissing number (equivalent to the number of nearest neighbors of each site), which provides optimal 3D angular discretization among all lattices. We employ a new two-pass (illumination and rendering) global illumination scheme on an FCC lattice. This scheme exploits the angular discretization to greatly simplify the computation in multiple scattering and to minimize illumination information storage. The GPU has been utilized to further accelerate the rendering stage. We demonstrate our new framework with participating media and volume rendering with multiple scattering, where both are significantly faster than traditional techniques with comparable quality.

[1]  Arie E. Kaufman,et al.  Incremental Triangle Voxelization , 2000, Graphics Interface.

[2]  David S. Ebert,et al.  VolQD: direct volume rendering of multi-million atom quantum dot simulations , 2005, VIS 05. IEEE Visualization, 2005..

[3]  N. J. A. Sloane,et al.  Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.

[4]  Suhas V. Patankar,et al.  RAY EFFECT AND FALSE SCATTERING IN THE DISCRETE ORDINATES METHOD , 1993 .

[5]  James T. Kajiya,et al.  Ray tracing volume densities , 1984, SIGGRAPH.

[6]  M. Rasras,et al.  Low-Loss Amorphous Silicon Channel Waveguides for Integrated Photonics , 2006, 3rd IEEE International Conference on Group IV Photonics, 2006..

[7]  Eduard Gröller,et al.  Optimal regular volume sampling , 2001, Proceedings Visualization, 2001. VIS '01..

[8]  James F. Blinn,et al.  Light reflection functions for simulation of clouds and dusty surfaces , 1982, SIGGRAPH.

[9]  N. Max Efficient light propagation for multiple anisotropic volume scattering , 1995 .

[10]  Francisco J. Serón,et al.  A survey on participating media rendering techniques , 2005, The Visual Computer.

[11]  Robert J. Schalkoff,et al.  Lattice-Boltzmann Lighting , 2004, Rendering Techniques.

[12]  Dan E. Dudgeon,et al.  Multidimensional Digital Signal Processing , 1983 .

[13]  Kai Hormann,et al.  A general construction of barycentric coordinates over convex polygons , 2006, Adv. Comput. Math..

[14]  Thomas C. Hales Sphere packings, I , 1997, Discret. Comput. Geom..

[15]  Greg Humphreys,et al.  Physically Based Rendering: From Theory to Implementation , 2004 .

[16]  Rüdiger Westermann,et al.  Acceleration techniques for GPU-based volume rendering , 2003, IEEE Visualization, 2003. VIS 2003..

[17]  Klaus Mueller,et al.  Space-time points: 4D splatting on efficient grids , 2002, Symposium on Volume Visualization and Graphics, 2002. Proceedings. IEEE / ACM SIGGRAPH.

[18]  H. O. Foulkes Abstract Algebra , 1967, Nature.

[19]  Arie E. Kaufman,et al.  O-buffer: a framework for sample-based graphics , 2004, IEEE Transactions on Visualization and Computer Graphics.

[20]  Nelson L. Max,et al.  Optical Models for Direct Volume Rendering , 1995, IEEE Trans. Vis. Comput. Graph..

[21]  Joe Michael Kniss,et al.  A Model for Volume Lighting and Modeling , 2003, IEEE Trans. Vis. Comput. Graph..

[22]  Kenneth E. Torrance,et al.  The zonal method for calculating light intensities in the presence of a participating medium , 1987, SIGGRAPH.

[23]  G. Rybicki Radiative transfer , 2019, Climate Change and Terrestrial Ecosystem Modeling.

[24]  Anselmo Lastra,et al.  Real‐Time Cloud Rendering , 2001, Comput. Graph. Forum.

[25]  Ramsay Dyer,et al.  Linear and cubic box splines for the body centered cubic lattice , 2004, IEEE Visualization 2004.

[26]  David S. Ebert,et al.  Efficient Rendering of Atmospheric Phenomena , 2004, Rendering Techniques.

[27]  Henrik Wann Jensen,et al.  Global Illumination using Photon Maps , 1996, Rendering Techniques.

[28]  Arie E. Kaufman,et al.  Volumetric ray tracing , 1994, VVS '94.

[29]  Per H. Christensen,et al.  Efficient simulation of light transport in scenes with participating media using photon maps , 1998, SIGGRAPH.

[30]  Christophe Schlick,et al.  A Rendering Algorithm for Discrete Volume Density Objects , 1993, Comput. Graph. Forum.

[31]  Michael Ashikhmin,et al.  A lighting model for general participating media , 2005, I3D '05.