What is a fractional derivative?

This paper discusses the concepts underlying the formulation of operators capable of being interpreted as fractional derivatives or fractional integrals. Two criteria for required by a fractional operator are formulated. The Grunwald-Letnikov, Riemann-Liouville and Caputo fractional derivatives and the Riesz potential are accessed in the light of the proposed criteria. A Leibniz rule is also obtained for the Riesz potential.

[1]  Manuel Duarte Ortigueira,et al.  Fractional Calculus for Scientists and Engineers , 2011, Lecture Notes in Electrical Engineering.

[2]  Roman S. Rutman,et al.  On the paper by R. R. Nigmatullin “fractional integral and its physical interpretation” , 1994 .

[3]  Thabet Abdeljawad,et al.  On conformable fractional calulus , 2014, 1402.6892.

[4]  Faycal Ben Adda Interprétation géométrique de la différentiabilité et du gradient d'ordre réel , 1998 .

[5]  Thabet Abdeljawad,et al.  On conformable fractional calculus , 2015, J. Comput. Appl. Math..

[6]  Nuno R. O. Bastos Fractional Calculus on Time Scales , 2012, 1202.2960.

[7]  Henry C. Thacher,et al.  Applied and Computational Complex Analysis. , 1988 .

[8]  J. K. Hammond,et al.  Physical and geometrical in-terpretation of fractional operators , 1998 .

[9]  Guy Jumarie,et al.  An approach to differential geometry of fractional order via modified Riemann-Liouville derivative , 2012 .

[10]  M. Riesz L'intégrale de Riemann-Liouville et le problème de Cauchy , 1949 .

[11]  José António Tenreiro Machado,et al.  On development of fractional calculus during the last fifty years , 2013, Scientometrics.

[12]  Aleksander Stanislavsky,et al.  Probability Interpretation of the Integral of Fractional Order , 2004 .

[13]  I. M. Gelfand,et al.  Generalized Functions: Properties and Operations , 2016 .

[14]  M. Ortigueira Fractional Central Differences and Derivatives , 2008 .

[15]  B. Ross,et al.  A BRIEF HISTORY AND EXPOSITION OF THE FUNDAMENTAL THEORY OF FRACTIONAL CALCULUS , 1975 .

[16]  Manuel Duarte Ortigueira,et al.  Discrete-time differential systems , 2015, Signal Process..

[17]  L. Caffarelli,et al.  An Extension Problem Related to the Fractional Laplacian , 2006, math/0608640.

[18]  Manuel Duarte Ortigueira,et al.  A new look into the discrete-time fractional calculus: derivatives and exponentials , 2013 .

[19]  Chien-Cheng Tseng,et al.  Design of digital Riesz fractional order differentiator , 2014, Signal Process..

[20]  Manuel Duarte Ortigueira,et al.  Riesz potential operators and inverses via fractional centred derivatives , 2006, Int. J. Math. Math. Sci..

[21]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[22]  F. Tatom THE RELATIONSHIP BETWEEN FRACTIONAL CALCULUS AND FRACTALS , 1995 .

[23]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[24]  Igor Podlubny,et al.  Geometric and Physical Interpretation of Fractional Integration and Fractional Differentiation , 2001, math/0110241.

[25]  L. Debnath,et al.  Integral Transforms and Their Applications, Second Edition , 2006 .

[26]  J. Machado,et al.  A Review of Definitions for Fractional Derivatives and Integral , 2014 .

[27]  J. A. Tenreiro Machado,et al.  Fractional derivatives: Probability interpretation and frequency response of rational approximations , 2009 .

[28]  Raoul R. Nigmatullin,et al.  Fractional integral and its physical interpretation , 1992 .

[29]  Manuel Duarte Ortigueira,et al.  A new look into the discrete-time fractional calculus: transform and linear systems , 2013 .

[30]  Vasily E. Tarasov,et al.  No violation of the Leibniz rule. No fractional derivative , 2013, Commun. Nonlinear Sci. Numer. Simul..

[31]  M. Sababheh,et al.  A new definition of fractional derivative , 2014, J. Comput. Appl. Math..

[32]  S. Holm,et al.  Fractional Laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency power-law dependency. , 2004, The Journal of the Acoustical Society of America.

[33]  J. Trujillo,et al.  A unified approach to fractional derivatives , 2012 .

[34]  Kiran M. Kolwankar,et al.  Fractional differentiability of nowhere differentiable functions and dimensions. , 1996, Chaos.

[35]  K. Diethelm The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type , 2010 .

[36]  Thomas J. Osler,et al.  A Child's Garden of Fractional Derivatives , 2000 .

[37]  António M. Lopes,et al.  Rhapsody in fractional , 2014 .

[38]  Zu-Guo Yu,et al.  Fractional integral associated to generalized cookie-cutter set and its physical interpretation , 1997 .

[39]  R. Rutman,et al.  On physical interpretations of fractional integration and differentiation , 1995 .

[40]  F. Mainardi,et al.  Recent history of fractional calculus , 2011 .