Subdivision schemes for smooth contact surfaces of arbitrary mesh topology in 3D

This paper presents a strategy to parameterize contact surfaces of arbitrary mesh topology in 3D with at least C1-continuity for both quadrilateral and triangular meshes. In the regular mesh domain, four quadrilaterals or six triangles meet in one node, even C2-continuity is attained. Therefore, we use subdivision surfaces, for which non-physical pressure jumps are avoided for contact interactions. They are usually present when the contact kinematics is based on facet elements discretizing the interacting bodies. The properties of subdivision surfaces give rise to basically four different implementation strategies. Each strategy has specific features and requires more or less efforts for an implementation in a finite element program. One strategy is superior with respect to the others in the sense that it does not use nodal degrees of freedom of the finite element mesh at the contact surface. Instead, it directly uses the degrees of freedom of the smooth surface. Thereby, remarkably, it does not require an interpolation. We show how the proposed method can be used to parameterize adaptively refined meshes with hanging nodes. This is essential when dealing with finite element models whose geometry is generated by means of subdivision techniques. Three numerical 3D problems demonstrate the improved accuracy, robustness and performance of the proposed method over facet-based contact surfaces. In particular, the third problem, adopted from biomechanics, shows the advantages when designing complex contact surfaces by means of subdivision techniques. Copyright © 2004 John Wiley & Sons, Ltd.

[1]  N. Dyn,et al.  A butterfly subdivision scheme for surface interpolation with tension control , 1990, TOGS.

[2]  N. Langrana,et al.  Modeling of facet articulation as a nonlinear moving contact problem: sensitivity study on lumbar facet response. , 1998, Journal of biomechanical engineering.

[3]  Gerhard A. Holzapfel,et al.  Cn continuous modelling of smooth contact surfaces using NURBS and application to 2D problems , 2003 .

[4]  K. Schweizerhof,et al.  Iterative mesh generation for FE‐computations on free form surfaces , 1997 .

[5]  Joe Warren,et al.  Subdivision Methods for Geometric Design: A Constructive Approach , 2001 .

[6]  J. Oden,et al.  Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods , 1987 .

[7]  M. Wilkins Calculation of Elastic-Plastic Flow , 1963 .

[8]  P. Wriggers,et al.  Smooth C1‐interpolations for two‐dimensional frictional contact problems , 2001 .

[9]  Anath Fischer,et al.  New B‐Spline Finite Element approach for geometrical design and mechanical analysis , 1998 .

[10]  J. Warren,et al.  Subdivision methods for geometric design , 1995 .

[11]  Chi King Lee,et al.  Automatic metric 3D surface mesh generation using subdivision surface geometrical model. Part 1: Construction of underlying geometrical model , 2003 .

[12]  P. Wriggers,et al.  A C1-continuous formulation for 3D finite deformation frictional contact , 2002 .

[13]  M. Ortiz,et al.  Subdivision surfaces: a new paradigm for thin‐shell finite‐element analysis , 2000 .

[14]  Peter Schröder,et al.  Interpolating Subdivision for meshes with arbitrary topology , 1996, SIGGRAPH.

[15]  T. Laursen Computational Contact and Impact Mechanics , 2003 .

[16]  R. Glowinski,et al.  Numerical Analysis of Variational Inequalities , 1981 .

[17]  Joze Korelc,et al.  Automatic Generation of Finite-Element Code by Simultaneous Optimization of Expressions , 1997, Theor. Comput. Sci..

[18]  C. A. Saracibar A new frictional time integration algorithm for large slip multi-body frictional contact problems , 1997 .

[19]  Eitan Grinspun,et al.  Natural hierarchical refinement for finite element methods , 2003 .

[20]  Deborah Greaves,et al.  Hierarchical tree-based finite element mesh generation , 1999 .

[21]  Toru Shimizu,et al.  An application of a penalty method contact and friction algorithm to a 3-dimensional tool surface expressed by a B-spline patch , 1995 .

[22]  Ulrich Reif,et al.  A unified approach to subdivision algorithms near extraordinary vertices , 1995, Comput. Aided Geom. Des..

[23]  A Shirazi-Adl,et al.  Finite-Element Evaluation of Contact Loads on Facets of an L2-L3 Lumbar Segment in Complex Loads , 1991, Spine.

[24]  Peter Schröder,et al.  Fitting subdivision surfaces , 2001, Proceedings Visualization, 2001. VIS '01..

[25]  H. Ehlers LECTURERS , 1948, Statistics for Astrophysics.

[26]  Peter Schröder,et al.  Integrated modeling, finite-element analysis, and engineering design for thin-shell structures using subdivision , 2002, Comput. Aided Des..

[27]  R. Ogden,et al.  A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models , 2000 .

[28]  Peter Wriggers,et al.  Computational Contact Mechanics , 2002 .

[29]  Jos Stam,et al.  Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values , 1998, SIGGRAPH.

[30]  Charles K. Mesztenyi,et al.  On a Data Structure for Adaptive Finite Element Mesh Refinements , 1980, TOMS.

[31]  J. C. Simo,et al.  A continuum-based finite element formulation for the implicit solution of multibody, large deformation-frictional contact problems , 1993 .

[32]  A. Curnier,et al.  Large deformation frictional contact mechanics: continuum formulation and augmented Lagrangian treatment , 1999 .

[33]  Leif Kobbelt,et al.  Interpolatory Subdivision on Open Quadrilateral Nets with Arbitrary Topology , 1996, Comput. Graph. Forum.

[34]  Michael Ortiz,et al.  Fully C1‐conforming subdivision elements for finite deformation thin‐shell analysis , 2001, International Journal for Numerical Methods in Engineering.

[35]  O. C. Zienkiewicz,et al.  A note on numerical computation of elastic contact problems , 1975 .

[36]  Malcolm A. Sabin,et al.  Behaviour of recursive division surfaces near extraordinary points , 1998 .

[37]  G. Holzapfel SECTION 10.11 – Biomechanics of Soft Tissue , 2001 .

[38]  A. Klarbring,et al.  Rigid contact modelled by CAD surface , 1990 .

[39]  Jean Schweitzer,et al.  Analysis and application of subdivision surfaces , 1996 .

[40]  T. Laursen,et al.  A framework for development of surface smoothing procedures in large deformation frictional contact analysis , 2001 .

[41]  A. Shirazi-Adl Nonlinear stress analysis of the whole lumbar spine in torsion--mechanics of facet articulation. , 1994, Journal of biomechanics.

[42]  N. Langrana,et al.  Role of Ligaments and Facets in Lumbar Spinal Stability , 1995, Spine.

[43]  M. Puso,et al.  A 3D contact smoothing method using Gregory patches , 2002 .

[44]  Peter Wriggers,et al.  Nichtlineare Finite-Element-Methoden , 2001 .

[45]  Gerhard A. Holzapfel,et al.  Nonlinear Solid Mechanics: A Continuum Approach for Engineering Science , 2000 .

[46]  Gerhard A. Holzapfel,et al.  An Anisotropic Model for Annulus Tissue and Enhanced Finite Element Analyses of Intact Lumbar Disc Bodies , 2001 .

[47]  T P Andriacchi,et al.  Study on effect of graded facetectomy on change in lumbar motion segment torsional flexibility using three-dimensional continuum contact representation for facet joints. , 1999, Journal of biomechanical engineering.

[48]  Shaker A. Meguid,et al.  Accurate modeling of contact using cubic splines , 2002 .

[49]  Denis Z orin Smoothness of Stationary Subdivision on Irregular Meshes , 1998 .

[50]  Etsuo Chosa,et al.  Mechanical analysis of the lumbar vertebrae in a three-dimensional finite element method model in which intradiscal pressure in the nucleus pulposus was used to establish the model , 2002, Journal of orthopaedic science : official journal of the Japanese Orthopaedic Association.

[51]  Shaker A. Meguid,et al.  On the modelling of smooth contact surfaces using cubic splines , 2001 .

[52]  Charles T. Loop,et al.  Smooth Subdivision Surfaces Based on Triangles , 1987 .

[53]  E. Catmull,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .

[54]  Denis Zorin,et al.  A Method for Analysis of C1 -Continuity of Subdivision Surfaces , 2000, SIAM J. Numer. Anal..

[55]  Peter Schröder,et al.  Rapid evaluation of Catmull-Clark subdivision surfaces , 2002, Web3D '02.