Multiscale structural and mechanical design of mineralized biocomposites

Gastropod mollusk nacre tablets and Polypterus senegalus armored scales share common features such as a very complex and changing structure spanning several length scales. The smallest building blocks are single crystals, have dimensions of a from tens of nanometers to several microns and are intimately blended with an organic glue present within pores or between the crystallites. In particular, our results strongly suggest that nacre tablets possess nanoscale porosity in the form of elongated tubules that may contain the intratablet macromolecules. Their unique structure allows these materials deform in a ductile way at the nanoscale, with no cracks observed, and to confine deformation at the microscale so as to impede crack propagation. Gradient in the mechanical properties are ubiquitous at both the microscale (scales) and the nanoscale (nacre tablets), preventing stress concentration and enhancing strain distribution. The armored scales thus exhibit a unique spatial functional form of mechanical properties with regions of differing levels of gradation within and between material layers, as well as layer with an undetectable gradation Though highly mineralized, these biomaterials also exhibit greater local heterogeneity in their mechanical properties compared to pure minerals. Materials layers have distinct morphology and mechanical properties depending on their role (resistance to abrasion for harder outer layers, resistance to fracture for tougher inner layers) and their interface are reinforced (by anchored organic fiber ligaments and corrugated interfaces that maximize contact surface., preventing propagation of cracks both through and along the interfaces. The heterogeneity in size and shape of the crystallites and the pores, as well as the variation in the composition (mineral / organic, crystalline / 4 amorphous) are likely responsible for the desirable variations of mechanical properties as observed in these biocomposites at the smallest length scales, resulting in more spatially distributed strains and greater energy dissipation. Thesis Supervisor: Christine Ortiz Title: Associate Professor of Materials Science and Engineering

[1]  F. Meunier,et al.  Organisation spatiale des fibres de collagène de la plaque basale des écailles des Téléostéens , 1982 .

[2]  R. Blakemore Magnetotactic bacteria , 1975, Science.

[3]  J. Sire From Ganoid To Elasmoid Scales in the Actinopterygian Fishes , 1989 .

[4]  Steve Weiner,et al.  Macromolecules in mollusc shells and their functions in biomineralization , 1984 .

[5]  S. Weiner Aspartic acid-rich proteins: Major components of the soluble organic matrix of mollusk shells , 1979, Calcified Tissue International.

[6]  B Russell,et al.  Lessons from nature. , 1993, Nursing.

[7]  Y. Bai,et al.  Microstructure and Characteristics in the Organic Matrix Layers of Nacre , 2002 .

[8]  Robert A. Berner,et al.  The role of magnesium in the crystal growth of calcite and aragonite from sea water , 1975 .

[9]  Franz-Josef Ulm,et al.  Nanogranular origins of the strength of bone. , 2006, Nano letters.

[10]  J. Evans,et al.  Characterization of two molluscan crystal‐modulating biomineralization proteins and identification of putative mineral binding domains , 2003, Biopolymers.

[11]  S. Wise Microstructure and mode of formation of nacre (mother-of-pearl) in pelecypods, gastropods, and cephalopods , 1970 .

[12]  K. Bachus,et al.  Influence of mineral content and composition on graylevels in backscattered electron images of bone. , 1993, Journal of biomedical materials research.

[13]  J. Currey The design of mineralised hard tissues for their mechanical functions. , 1999, The Journal of experimental biology.

[14]  F. Cui,et al.  Observations of damage morphologies in nacre during deformation and fracture , 1995 .

[15]  S. Weiner,et al.  Control and Design Principles in Biological Mineralization , 1992 .

[16]  S. B L A N K,et al.  The nacre protein perlucin nucleates growth of calcium carbonate crystals , 2003 .

[17]  P. Fratzl,et al.  Nanoscale deformation mechanisms in bone. , 2009, Nano letters.

[18]  A. Lowenfels A REVIEW AND UPDATE , 1979 .

[19]  T. Huber,et al.  Acidic peptides acting as growth modifiers of calcite crystals. , 2004, Chemical communications.

[20]  Daniel Chateigner,et al.  Mollusc shell microstructures and crystallographic textures , 2000 .

[21]  N. Watabe,et al.  Influence of the Organic Matrix on Crystal Type in Molluscs , 1960, Nature.

[22]  H. Lowenstam,et al.  Minerals formed by organisms. , 1981, Science.

[23]  R. O. Ritchie,et al.  The dentin–enamel junction and the fracture of human teeth , 2005, Nature materials.

[24]  John H. Long,et al.  The Importance of Body Stiffness in Undulatory Propulsion , 1996 .

[25]  S. Suresh,et al.  Graded Materials for Resistance to Contact Deformation and Damage , 2001, Science.

[26]  Peter Self,et al.  The origin of the color of pearls in iridescence from nano-composite structures of the nacre , 2004 .

[27]  I. Aksay,et al.  Biomimetics. Design and Processing of Materials. , 1995 .

[28]  X. H. Wu,et al.  Control of crystal phase switching and orientation by soluble mollusc-shell proteins , 1996, Nature.

[29]  A. P. Jackson,et al.  Comparison of nacre with other ceramic composites , 1990 .

[30]  Mehmet Sarikaya,et al.  Nano-mechanical properties profiles across dentin–enamel junction of human incisor teeth , 1999 .

[31]  Steve Weiner,et al.  Mollusk shell formation: a source of new concepts for understanding biomineralization processes. , 2006, Chemistry.

[32]  H. Qi,et al.  Effect of mineral content on the nanoindentation properties and nanoscale deformation mechanisms of bovine tibial cortical bone , 2005, Journal of materials science. Materials in medicine.

[33]  P. Anderson,et al.  Feeding mechanics and bite force modelling of the skull of Dunkleosteus terrelli, an ancient apex predator , 2007, Biology Letters.

[34]  A. Katz The interaction of magnesium with calcite during crystal growth at 25–90°C and one atmosphere , 1973 .

[35]  S. Gorb,et al.  Local mechanical properties of the head articulation cuticle in the beetle Pachnoda marginata (Coleoptera, Scarabaeidae) , 2006, Journal of Experimental Biology.

[36]  H. Catherine W. Skinner,et al.  Structural and Chemical Organization of Teeth , 1967, The Yale Journal of Biology and Medicine.

[37]  S. Weiner,et al.  Structure of the nacreous organic matrix of a bivalve mollusk shell examined in the hydrated state using cryo-TEM. , 2001, Journal of structural biology.

[38]  A. Nanci,et al.  Immunodetection of amelogenin‐like proteins in the ganoine of experimentally regenerating scales of Calamoichthys calabaricus, a primitive actinopterygian fish , 1997, The Anatomical record.

[39]  J. J. Hoedeman,et al.  Naturalists' Guide to Fresh-Water Aquarium Fish , 1976 .

[40]  S. Weiner,et al.  Electron diffraction of mollusc shell organic matrices and their relationship to the mineral phase , 1983 .

[41]  J. Voegel,et al.  Ultrastructural study of apatite crystal dissolution in human dentine and bone. , 1977, Journal de biologie buccale.

[42]  Jacqueline A. Cutroni,et al.  Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture , 2005, Nature materials.

[43]  M. Möller,et al.  Visualization of macromolecules--a first step to manipulation and controlled response. , 2001, Chemical reviews.

[44]  H. Isenberg,et al.  The Mechanisms of Mineralization in the Invertebrates and Plants , 1976 .

[45]  Huajian Gao,et al.  A study of fracture mechanisms in biological nano-composites via the virtual internal bond model , 2004 .

[46]  Herbert A. Sturges,et al.  The Choice of a Class Interval , 1926 .

[47]  Robert M. Panas,et al.  Nanoscale Morphology and Indentation of Individual Nacre Tablets from the Gastropod Mollusc Trochus Niloticus , 2005 .

[48]  P. Hansma,et al.  Imaging Single Nacreous Tablets with the Atomic Force Microscope , 1994 .

[49]  G. Pharr,et al.  An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments , 1992 .

[50]  T. Tan,et al.  Iridescence of a shell of mollusk Haliotis Glabra. , 2004, Optics express.

[51]  M. Crenshaw THE INORGANIC COMPOSITION OF MOLLUSCAN EXTRAPALLIAL FLUID. , 1972, The Biological bulletin.

[52]  S. Qiu,et al.  Acceleration of Calcite Kinetics by Abalone Nacre Proteins , 2005 .

[53]  A. Lutts,et al.  X-ray diffraction patterns from the prisms of mollusk shells , 1960 .

[54]  D. J. Barber,et al.  Electron microscopy of molluscan crossed-lamellar microstructure , 1992 .

[55]  A. P. Jackson,et al.  The mechanical design of nacre , 1988, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[56]  PROBLEMS IN VERTEBRATE EVOLUTION , 1978 .

[57]  W. Ramberg,et al.  Description of Stress-Strain Curves by Three Parameters , 1943 .

[58]  A. Brack,et al.  Control Over Aragonite Crystal Nucleation and Growth: An In Vitro Study of Biomineralization , 1998 .

[59]  F. Meldrum Calcium carbonate in biomineralisation and biomimetic chemistry , 2003 .

[60]  John D. Currey,et al.  Mechanical properties of mother of pearl in tension , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[61]  Zhigang Suo,et al.  Model for the robust mechanical behavior of nacre , 2001 .

[62]  D. Weber Sheath configurations in human cuspal enamel , 1973, Journal of morphology.

[63]  J. Sire Light and TEM study of nonregenerated and experimentally regenerated scales of Lepisosteus oculatus (holostei) with particular attention to ganoine formation , 1994, The Anatomical record.

[64]  K. Bachus,et al.  The meaning of graylevels in backscattered electron images of bone. , 1993, Journal of biomedical materials research.

[65]  M. Boyce,et al.  A Constitutive Model for the Stress-Strain Behavior of Biomacromolecular Networks Containing Folded Domains , 2004 .

[66]  C. Grégoire On submicroscopic structure of the Nautilus shell , 1962 .

[67]  S. B. Parker,et al.  Problems in the Understanding of Biominerals , 1983 .

[68]  M. Antonietti,et al.  Amorphous layer around aragonite platelets in nacre. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[69]  H. Mutvei The nacreous layer in Mytilus, Nucula, and Unio (Bivalvia). Crystalline composition and nucleation of nacreous tablets. , 1977, Calcified tissue research.

[70]  Y. Dauphin The organic matrix of coleoid cephalopod shells: molecular weights and isoelectric properties of the soluble matrix in relation to biomineralization processes , 1996, Marine Biology.

[71]  N. Vagenas,et al.  Calcium carbonate phase analysis using XRD and FT-Raman spectroscopy , 2000 .

[72]  H. Erben,et al.  Crystal formation and growth in bivalve nacre , 1974, Nature.

[73]  W H Douglas,et al.  Scanning electron microscopy of type I collagen at the dentin-enamel junction of human teeth. , 1993, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[74]  K. Bachus,et al.  Reproducible methods for calibrating the backscattered electron signal for quantitative assessment of mineral content in bone. , 1990, Scanning microscopy.

[75]  Patricia M. Dove,et al.  An Overview of Biomineralization Processes and the Problem of the Vital Effect , 2003 .

[76]  S A Gansky,et al.  Mechanical properties of the dentinoenamel junction: AFM studies of nanohardness, elastic modulus, and fracture. , 2001, Journal of biomedical materials research.

[77]  G. J. Romanes,et al.  Current Problems of Lower Vertebrate Phylogeny. , 1969 .

[78]  S. Lyngstadaas,et al.  Crown morphology, enamel distribution, and enamel structure in mouse molars , 1998, The Anatomical record.

[79]  R. Neal,et al.  Structure of mature human dental enamel as observed by electron microscopy. , 1965, Archives of oral biology.

[80]  J. Evans,et al.  A crystal modulating protein from molluscan nacre that limits the growth of calcite in vitro , 2006 .

[81]  S. Weiner,et al.  Mollusk shell organic matrix: Fourier transform infrared study of the acidic macromolecules , 1986 .

[82]  S. Weiner,et al.  Design strategies in mineralized biological materials , 1997 .

[83]  Zhigang Suo,et al.  Deformation mechanisms in nacre , 2001 .

[84]  H. Nakahara,et al.  An electron microscope study of the formation of the nacreous layer in the shell of certain bivalve molluscs , 2005, Calcified Tissue Research.

[85]  R. Ritchie,et al.  Mechanistic fracture criteria for the failure of human cortical bone , 2003, Nature materials.

[86]  H. Nakahara,et al.  The formation and growth of the prismatic layer ofPinctada radiata , 2005, Calcified Tissue Research.

[87]  S. Weiner,et al.  Strain-structure relations in human teeth using Moiré fringes. , 1997, Journal of biomechanics.

[88]  M. Barthélémy,et al.  Soluble silk-like organic matrix in the nacreous layer of the bivalve Pinctada maxima. , 2002, European journal of biochemistry.

[89]  D. Volkmer,et al.  Crystallization of Calcium Carbonate Beneath Insoluble Monolayers: Suitable Models of Mineral–Matrix Interactions in Biomineralization? , 2006 .

[90]  A. P. Wheeler,et al.  Regulation of Carbonate Calcification by Organic Matrix , 1984 .

[91]  Marc A. Meyers,et al.  Quasi-static and dynamic mechanical response of Haliotis rufescens (abalone) shells , 2000 .

[92]  T. Barrette,et al.  Calcitic microlenses as part of the photoreceptor system in brittlestars , 2022 .

[93]  S. Weiner,et al.  X‐ray diffraction study of the insoluble organic matrix of mollusk shells , 1980 .

[94]  G. Clark Organic matrix taphonomy in some molluscan shell microstructures , 1999 .

[95]  P. Hansma,et al.  Direct observation of the transition from calcite to aragonite growth as induced by abalone shell proteins. , 2000, Biophysical journal.

[96]  Max R. Taylor,et al.  On the structure of aragonite -- Lawrence Bragg revisited. , 2002, Acta crystallographica. Section B, Structural science.

[97]  B. Runnegar Crystallography of the foliated calcite shell layers of bivalve molluscs , 1984 .

[98]  P. Fratzl,et al.  Graded Microstructure and Mechanical Properties of Human Crown Dentin , 2001, Calcified Tissue International.

[99]  Xavier Bourrat,et al.  Multiscale structure of sheet nacre. , 2005, Biomaterials.

[100]  C. Carpenter Evolution of the vertebrates. , 1955 .

[101]  Jeffrey E. Bischoff,et al.  Orthotropic Hyperelasticity in Terms of an Arbitrary Molecular Chain Model , 2002 .

[102]  Jeffrey E. Bischoff,et al.  A microstructurally based orthotropic hyperelastic constitutive law , 2002 .

[103]  T. P. Weihs,et al.  Nanoindentation mapping of the mechanical properties of human molar tooth enamel. , 2002, Archives of oral biology.

[104]  J. Evans,et al.  Structural analyses of polyelectrolyte sequence domains within the adhesive elastomeric biomineralization protein Lustrin A , 2002 .

[105]  J. Sire Ganoine formation in the scales of primitive actinopterygian fishes, lepisosteids and polypterids. , 1995, Connective tissue research.

[106]  F. Meunier,et al.  Participation des cellules épidermiques à la formation de la ganoïne au cours de la régénération expérimentale des écailles de Calamoichthys calabaricus (Smith, 1886) (Polypteridae, Osteichthyeus) , 1986 .

[107]  R. Young Implications of Atomic Substitutions and Other Structural Details in Apatites , 1974, Journal of dental research.

[108]  Douglas C. Wilson,et al.  Ionotropic Nucleation of Calcium Carbonate by Molluscan Matrix , 1984 .

[109]  M. Hanson The Elastic Field for Spherical Hertzian Contact Including Sliding Friction for Transverse Isotropy , 1992 .

[110]  Stephen Mann,et al.  Molecular recognition in biomineralization , 1988, Nature.

[111]  D. W. Scott On optimal and data based histograms , 1979 .

[112]  A. Palazoglu,et al.  Nanoscale heterogeneity promotes energy dissipation in bone. , 2007, Nature materials.

[113]  Dierk Raabe,et al.  The crustacean exoskeleton as an example of a structurally and mechanically graded biological nanocomposite material , 2005 .

[114]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[115]  H. Mutvei Ultrastructural Characteristics of the Nacre in Some Gastropods , 1978 .

[116]  R O Ritchie,et al.  Ultrastructural examination of dentin using focused ion-beam cross-sectioning and transmission electron microscopy. , 2005, Micron.

[117]  A. Minelli BIO , 2009, Evolution & Development.

[118]  M. McMenamin,et al.  The Emergence of Animals the Cambrian Breakthrough , 1990 .

[119]  Geoffrey E. Lloyd,et al.  Atomic number and crystallographic contrast images with the SEM: a review of backscattered electron techniques , 1987, Mineralogical Magazine.

[120]  S. Weiner,et al.  Mollusc larval shell formation: amorphous calcium carbonate is a precursor phase for aragonite. , 2002, The Journal of experimental zoology.

[121]  L. Gower,et al.  Formation of single-crystalline aragonite tablets/films via an amorphous precursor. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[122]  M. Fritz,et al.  A Simple and Reliable Method for the Determination and Localization of Chitin in Abalone Nacre , 2002 .

[123]  O. Bøggild The shell structure of the Mollusks , 1930 .

[124]  M. Fritz,et al.  Abalone nacre insoluble matrix induces growth of flat and oriented aragonite crystals. , 2006, Biochemical and biophysical research communications.

[125]  Steve Weiner,et al.  Mollusk shell formation: mapping the distribution of organic matrix components underlying a single aragonitic tablet in nacre. , 2006, Journal of structural biology.

[126]  S. Kotha,et al.  Micromechanical model of nacre tested in tension , 2001 .

[127]  Mario Viani,et al.  Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites , 1999, Nature.

[128]  H. Nakahara Calcification of Gastropod Nacre , 1983 .

[129]  S. Weiner,et al.  Control of Aragonite or Calcite Polymorphism by Mollusk Shell Macromolecules , 1996, Science.

[130]  M. Boyce,et al.  Design of multilayer polymeric coatings for indentation resistance , 1995 .

[131]  S. Weiner,et al.  Peritubular dentin formation: crystal organization and the macromolecular constituents in human teeth. , 1999, Journal of structural biology.