The Log-Kumaraswamy Generalized Gamma Regression Model with Application to Chemical Dependency Data

The ve parameter Kumaraswamy generalized gamma model (Pas- coa et al., 2011) includes some important distributions as special cases and it is very useful for modeling lifetime data. We propose an extended version of this distribution by assuming that a shape parameter can take negative values. The new distribution can accommodate increasing, decreasing, bath- tub and unimodal shaped hazard functions. A second advantage is that it also includes as special models reciprocal distributions such as the recipro- cal gamma and reciprocal Weibull distributions. A third advantage is that it can represent the error distribution for the log-Kumaraswamy general- ized gamma regression model. We provide a mathematical treatment of the new distribution including explicit expressions for moments, generating function, mean deviations and order statistics. We obtain the moments of the log-transformed distribution. The new regression model can be used more eectively in the analysis of survival data since it includes as sub- models several widely-known regression models. The method of maximum likelihood and a Bayesian procedure are used for estimating the model pa- rameters for censored data. Overall, the new regression model is very useful to the analysis of real data.

[1]  B. W. Conolly,et al.  Handbook of Hypergeometric Integrals. , 1978 .

[2]  Marlatt Ga Integrating contingency management with relapse prevention skills: comment on Silverman et al. (2001). , 2001 .

[3]  D. N. Prabhakar Murthy,et al.  A modified Weibull distribution , 2003, IEEE Trans. Reliab..

[4]  S. Nadarajah,et al.  Generalized gamma variables with drought application , 2008 .

[5]  Christopher Cox,et al.  The generalized F distribution: An umbrella for parametric survival analysis , 2008, Statistics in medicine.

[6]  Marcelino A. R. Pascoa,et al.  The log-exponentiated generalized gamma regression model for censored data , 2012 .

[7]  Saralees Nadarajah,et al.  Explicit expressions for moments of order statistics , 2008 .

[8]  Gauss M. Cordeiro,et al.  The exponentiated generalized gamma distribution with application to lifetime data , 2011 .

[9]  J. Lawless Statistical Models and Methods for Lifetime Data , 2002 .

[10]  Heleno Bolfarine,et al.  Influence diagnostics in exponentiated-Weibull regression models with censored data , 2006 .

[11]  E. W. Stacy,et al.  Parameter Estimation for a Generalized Gamma Distribution , 1965 .

[12]  Harold Exton,et al.  Handbook of Hypergeometric Integrals: Theory, Applications, Tables, Computer Programs , 1978 .

[13]  E. M. Wright,et al.  The Asymptotic Expansion of the Generalized Bessel Function , 1935 .

[14]  R. S. Kaler,et al.  On the performance analysis of wireless receiver using generalized-gamma fading model , 2009, Ann. des Télécommunications.

[15]  Constantine Kotropoulos,et al.  Phonemic segmentation using the generalised Gamma distribution and small sample Bayesian information criterion , 2008, Speech Commun..

[16]  Alain Dussauchoy,et al.  Parameter estimation of the generalized gamma distribution , 2008, Math. Comput. Simul..

[17]  G F Koob,et al.  Drug abuse: hedonic homeostatic dysregulation. , 1997, Science.

[18]  Min Xie,et al.  Reliability analysis using an additive Weibull model with bathtub-shaped failure rate function , 1996 .

[19]  N. Volkow,et al.  The neural basis of addiction: a pathology of motivation and choice. , 2005, The American journal of psychiatry.

[20]  David R. Cox,et al.  Regression models and life tables (with discussion , 1972 .

[21]  Haitao Chu,et al.  Parametric survival analysis and taxonomy of hazard functions for the generalized gamma distribution , 2007, Statistics in medicine.

[22]  Bradley P. Carlin,et al.  Markov Chain Monte Carlo conver-gence diagnostics: a comparative review , 1996 .

[23]  Vicente G Cancho,et al.  Generalized log-gamma regression models with cure fraction , 2009, Lifetime data analysis.

[24]  David M. Rocke,et al.  Analysis of MALDI FT-ICR mass spectrometry data: a time series approach. , 2009, Analytica chimica acta.

[25]  Michael Trott,et al.  The Mathematica GuideBook for Symbolics , 2006, The Mathematica Guidebook.

[26]  Heleno Bolfarine,et al.  Influence diagnostics in generalized log-gamma regression models , 2003, Comput. Stat. Data Anal..

[27]  On the use of the generalised gamma distribution , 2008 .

[28]  K. Lynch,et al.  Alcohol relapse as a function of relapse definition in a clinical sample of adolescents. , 2003, Addictive behaviors.

[29]  Debasis Kundu,et al.  Generalized Rayleigh distribution: different methods of estimations , 2005, Comput. Stat. Data Anal..

[30]  Erika B. Litvin,et al.  Relapse and relapse prevention. , 2007, Annual review of clinical psychology.

[31]  Gauss M. Cordeiro,et al.  The Kumaraswamy generalized gamma distribution with application in survival analysis , 2011 .

[32]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[33]  E. Stacy A Generalization of the Gamma Distribution , 1962 .

[34]  Saralees Nadarajah,et al.  A generalized gamma distribution with application to drought data , 2007, Math. Comput. Simul..

[35]  D. Kundu,et al.  Theory & Methods: Generalized exponential distributions , 1999 .

[36]  Gauss M. Cordeiro,et al.  A generalized modified Weibull distribution for lifetime modeling , 2008 .

[37]  R. Tallarida Table of Integrals , 1999 .

[38]  W. Miller,et al.  What predicts relapse? Prospective testing of antecedent models. , 1996, Addiction.

[39]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[40]  Megan E. Piper,et al.  Addiction motivation reformulated: an affective processing model of negative reinforcement. , 2004, Psychological review.

[41]  Heleno Bolfarine,et al.  The Log-exponentiated-Weibull Regression Models with Cure Rate: Local Influence and Residual Analysis , 2021, Journal of Data Science.

[42]  Deo Kumar Srivastava,et al.  The exponentiated Weibull family: a reanalysis of the bus-motor-failure data , 1995 .

[43]  Gauss M. Cordeiro,et al.  The log-exponentiated Weibull regression model for interval-censored data , 2010, Comput. Stat. Data Anal..

[44]  Heleno Bolfarine,et al.  Deviance residuals in generalised log-gamma regression models with censored observations , 2008 .