Sequential Permutation Testing of Random Forest Variable Importance Measures

[1]  A. Hapfelmeier,et al.  COVID-19 assessment in family practice—A clinical decision rule based on self-rated symptoms and contact history , 2021, npj Primary Care Respiratory Medicine.

[2]  Achim Zeileis,et al.  Predictive Distribution Modeling Using Transformation Forests , 2021, J. Comput. Graph. Stat..

[3]  Gerhard Tutz,et al.  Ordinal Trees and Random Forests: Score-Free Recursive Partitioning and Improved Ensembles , 2021, Journal of Classification.

[4]  Stephen E. Fienberg,et al.  Testing Statistical Hypotheses , 2005 .

[5]  C. Strobl,et al.  Conditional permutation importance revisited , 2020, BMC Bioinformatics.

[6]  Roman Hornung,et al.  Ordinal Forests , 2020, J. Classif..

[7]  Richard D Riley,et al.  Calculating the sample size required for developing a clinical prediction model , 2020, BMJ.

[8]  L. Mentch,et al.  Predictive inference with random forests: A new perspective on classical analyses , 2020 .

[9]  Brandon M. Greenwell,et al.  Multivariate Adaptive Regression Splines , 2019, Hands-On Machine Learning with R.

[10]  Michael I. Miller,et al.  A comparison of random forest variable selection methods for classification prediction modeling , 2019, Expert Syst. Appl..

[11]  Stefano Nembrini,et al.  On what to permute in test-based approaches for variable importance measures in Random Forests , 2018, Bioinform..

[12]  Giles Hooker,et al.  Unrestricted permutation forces extrapolation: variable importance requires at least one more model, or there is no free variable importance , 2019, Statistics and Computing.

[13]  Wei Peng,et al.  Scalable and Efficient Hypothesis Testing with Random Forests , 2019, J. Mach. Learn. Res..

[14]  T. Hothorn,et al.  Individual treatment effect prediction for amyotrophic lateral sclerosis patients , 2018, Statistical methods in medical research.

[15]  Silke Janitza,et al.  On the overestimation of random forest’s out-of-bag error , 2018, PloS one.

[16]  Hemant Ishwaran,et al.  Standard errors and confidence intervals for variable importance in random forest regression, classification, and survival , 2018, Statistics in medicine.

[17]  Frauke Degenhardt,et al.  Evaluation of variable selection methods for random forests and omics data sets , 2017, Briefings Bioinform..

[18]  Mariana Belgiu,et al.  Random forest in remote sensing: A review of applications and future directions , 2016 .

[19]  Anne-Laure Boulesteix,et al.  A computationally fast variable importance test for random forests for high-dimensional data , 2015, Adv. Data Anal. Classif..

[20]  Ewout W Steyerberg,et al.  Modern modelling techniques are data hungry: a simulation study for predicting dichotomous endpoints , 2014, BMC Medical Research Methodology.

[21]  Alexander Hapfelmeier,et al.  Variable selection by Random Forests using data with missing values , 2014, Comput. Stat. Data Anal..

[22]  G. Hooker,et al.  Formal Hypothesis Tests for Additive Structure in Random Forests , 2014, Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America.

[23]  G. Hooker,et al.  Quantifying Uncertainty in Random Forests via Confidence Intervals and Hypothesis Tests , 2014, J. Mach. Learn. Res..

[24]  Carolin Strobl,et al.  Letter to the Editor: On the term ‘interaction’ and related phrases in the literature on Random Forests , 2014, Briefings Bioinform..

[25]  Georgiy V. Bobashev,et al.  Random forest methodology for model-based recursive partitioning: the mobForest package for R , 2013, BMC Bioinformatics.

[26]  Alexander Hapfelmeier,et al.  A new variable selection approach using Random Forests , 2013, Comput. Stat. Data Anal..

[27]  Anne-Laure Boulesteix,et al.  Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics , 2012, WIREs Data Mining Knowl. Discov..

[28]  Torsten Hothorn,et al.  Recursive partitioning on incomplete data using surrogate decisions and multiple imputation , 2012, Comput. Stat. Data Anal..

[29]  Achim Zeileis,et al.  BMC Bioinformatics BioMed Central Methodology article Conditional variable importance for random forests , 2008 .

[30]  Carolin Strobl,et al.  Unbiased split selection for classification trees based on the Gini Index , 2007, Comput. Stat. Data Anal..

[31]  Achim Zeileis,et al.  Bias in random forest variable importance measures: Illustrations, sources and a solution , 2007, BMC Bioinformatics.

[32]  Nicolai Meinshausen,et al.  Quantile Regression Forests , 2006, J. Mach. Learn. Res..

[33]  K. Hornik,et al.  Unbiased Recursive Partitioning: A Conditional Inference Framework , 2006 .

[34]  Ronald K. Pearson,et al.  The problem of disguised missing data , 2006, SKDD.

[35]  P. Good Permutation, Parametric, and Bootstrap Tests of Hypotheses , 2005 .

[36]  L. Breiman Random Forests , 2001, Encyclopedia of Machine Learning and Data Mining.

[37]  P. Good,et al.  Permutation Tests: A Practical Guide to Resampling Methods for Testing Hypotheses , 1995 .

[38]  J. Besag,et al.  Sequential Monte Carlo p-values , 1991 .

[39]  B. K. Ghosh,et al.  Sequential Tests of Statistical Hypotheses. , 1972 .

[40]  M. Dwass Modified Randomization Tests for Nonparametric Hypotheses , 1957 .

[41]  Bernd Bischl,et al.  Benchmark for filter methods for feature selection in high-dimensional classification data , 2020, Comput. Stat. Data Anal..

[42]  Brendan J. Frey,et al.  Are Random Forests Truly the Best Classifiers? , 2016, J. Mach. Learn. Res..

[43]  Elfriede Penz,et al.  Zeileis Conditional Variable Importance for Random Forests , 2015 .

[44]  Senén Barro,et al.  Do we need hundreds of classifiers to solve real world classification problems? , 2014, J. Mach. Learn. Res..

[45]  Carolin Strobl,et al.  A new variable importance measure for random forests with missing data , 2012, Statistics and Computing.

[46]  G. Tutz,et al.  An introduction to recursive partitioning: rationale, application, and characteristics of classification and regression trees, bagging, and random forests. , 2009, Psychological methods.

[47]  Andy Liaw,et al.  Classification and Regression by randomForest , 2007 .

[48]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[49]  Janis E. Johnston,et al.  Permutation methods , 2001 .

[50]  Robin H. Lock,et al.  A sequential approximation to a permutation test , 1991 .