Approximate convex decomposition of polygons

We propose a strategy to decompose a polygon, containing zero or more holes, into ``approximately convex'' pieces. For many applications, the approximately convex components of this decomposition provide similar benefits as convex components, while the resulting decomposition is significantly smaller and can be computed more efficiently. Moreover, our approximate convex decomposition (ACD) provides a mechanism to focus on key structural features and ignoreless significant artifacts such as wrinkles and surface texture a user specified tolerance determines allowable concavity. We propose a simple algorithm that computes an ACD of a polygon by iteratively removing (resolving) the most significant non-convex feature (notch). As a by product, it produces an elegant hierarchical representation that provides a series of `increasingly convex' decompositions. Our algorithm computes an ACD of a simple polygon with n verticesand r notches in O(nr) time. In contrast, exact convex decomposition is NP-hard or,if the polygon has no holes, takes O(nr2) time.

[1]  Mohamed S. Kamel,et al.  Shape representation using concavity graphs , 2002, Object recognition supported by user interaction for service robots.

[2]  D. T. Lee,et al.  Euclidean shortest paths in the presence of rectilinear barriers , 1984, Networks.

[3]  B. Chazelle,et al.  Optimal Convex Decompositions , 1985 .

[4]  David Avis,et al.  A Linear Algorithm for Finding the Convex Hull of a Simple Polygon , 1979, Inf. Process. Lett..

[5]  Nancy M. Amato,et al.  Approximate convex decomposition , 2004, SCG '04.

[6]  Leonidas J. Guibas,et al.  Linear-time algorithms for visibility and shortest path problems inside triangulated simple polygons , 1987, Algorithmica.

[7]  Gabriella Sanniti di Baja,et al.  Analyzing Nonconvex 2D and 3D Patterns , 1996, Comput. Vis. Image Underst..

[8]  Tamal K. Dey,et al.  Shape Segmentation and Matching with Flow Discretization , 2003, WADS.

[9]  Bernard Chazelle,et al.  A theorem on polygon cutting with applications , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[10]  Kaleem Siddiqi,et al.  Parts of visual form: computational aspects , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[11]  Martin Held,et al.  FIST: Fast Industrial-Strength Triangulation of Polygons , 2001, Algorithmica.

[12]  J. Mark Keil,et al.  Decomposing a Polygon into Simpler Components , 1985, SIAM J. Comput..

[13]  Vladimir J. Lumelsky,et al.  Polygon Area Decomposition for Multiple-Robot Workspace Division , 1998, Int. J. Comput. Geom. Appl..

[14]  Andrzej Lingas,et al.  The Power of Non-Rectilinear Holes , 1982, ICALP.

[15]  Andrzej Lingas,et al.  Bounds on the Length of Convex Partitions of Polygons , 1984, FSTTCS.

[16]  Pankaj K. Agarwal,et al.  Polygon Decomposition for Efficient Construction of Minkowski Sums , 2000, ESA.

[17]  Alan E. Middleditch,et al.  Convex Decomposition of Simple Polygons , 1984, TOGS.

[18]  Paul L. Rosin Shape Partitioning by Convexity , 1999, BMVC.

[19]  Donald D. Hoffman,et al.  Parsing silhouettes: The short-cut rule , 1999, Perception & psychophysics.

[20]  I. Biederman Recognition-by-components: a theory of human image understanding. , 1987, Psychological review.

[21]  Henk Meijer,et al.  Minimum convex partition of a constrained point set , 2001, Discret. Appl. Math..

[22]  Ayellet Tal,et al.  Hierarchical mesh decomposition using fuzzy clustering and cuts , 2003, ACM Trans. Graph..

[23]  Bernard Chazelle,et al.  Decomposing a polygon into its convex parts , 1979, STOC.

[24]  Godfried T. Toussaint,et al.  An Optimal Algorithm for Determining the Visibility of a Polygon from an Edge , 1981, IEEE Transactions on Computers.

[25]  Joseph S. B. Mitchell,et al.  Folding flat silhouettes and wrapping polyhedral packages: new results in computational origami , 1999, SCG '99.

[26]  Anthony G. Cohn,et al.  A Hierarchical Representation of Qualitative Shape based on Connection and Convexity , 1995, COSIT.

[27]  Francis Y. L. Chin,et al.  Finding the Medial Axis of a Simple Polygon in Linear Time , 1995, ISAAC.

[28]  Nancy M. Amato,et al.  Approximate convex decomposition of polygons , 2006, Comput. Geom..

[29]  J. Mark Keil,et al.  Polygon Decomposition , 2000, Handbook of Computational Geometry.

[30]  Jack Sklansky,et al.  Measuring Concavity on a Rectangular Mosaic , 1972, IEEE Transactions on Computers.

[31]  Carlo H. Séquin,et al.  2D Shape Decomposition and the Automatic Generation of Hierarchical Representations , 1998, Int. J. Shape Model..

[32]  Gabriella Sanniti di Baja,et al.  Methods for hierarchical analysis of concavities , 1992, Proceedings., 11th IAPR International Conference on Pattern Recognition. Vol. III. Conference C: Image, Speech and Signal Analysis,.

[33]  Remco C. Veltkamp,et al.  Polygon decomposition based on the straight line skeleton , 2003, SCG '03.

[34]  D. Marr,et al.  Analysis of occluding contour , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[35]  Helman I. Stern,et al.  Polygonal entropy: A convexity measure , 1989, Pattern Recognit. Lett..

[36]  Paul L. Rosin,et al.  A Convexity Measurement for Polygons , 2002, BMVC.

[37]  Jack Snoeyink,et al.  On the time bound for convex decomposition of simple polygons , 1998, CCCG.

[38]  Theodosios Pavlidis,et al.  Decomposition of Polygons into Simpler Components: Feature Generation for Syntactic Pattern Recognition , 1975, IEEE Transactions on Computers.

[39]  Bernard Chazelle Triangulating a simple polygon in linear time , 1991, Discret. Comput. Geom..