Assembly of one dimensional inorganic nanostructures into functional 2D and 3D architectures. Synthesis, arrangement and functionality.

This review will focus on the synthesis, arrangement, structural assembly, for current and future applications, of 1D nanomaterials (tubes, wires, rods) in 2D and 3D ordered arrangements. The ability to synthesize and arrange one dimensional nanomaterials into ordered 2D or 3D micro or macro sized structures is of utmost importance in developing new devices and applications of these materials. Micro and macro sized architectures based on such 1D nanomaterials (e.g. tubes, wires, rods) provide a platform to integrate nanostructures at a larger and thus manageable scale into high performance electronic devices like field effect transistors, as chemo- and biosensors, catalysts, or in energy material applications. Carbon based, metal oxide and metal based 1D arranged materials as well as hybrid or composite 1D materials of the latter provide a broad materials platform, offering a perspective for new entries into fascinating structures and future applications of such assembled architectures. These architectures allow bridging the gap between 1D nanostructures and the micro and macro world and are the basis for an assembly of 1D materials into higher hierarchy domains. This critical review is intended to provide an interesting starting point to view the current state of the art and show perspectives for future developments in this field. The emphasis is on selected nanomaterials and the possibilities for building three dimensional arrays starting from one dimensional building blocks. Carbon nanotubes, metal oxide nanotubes and nanowires (e.g. ZnO, TiO(2), V(2)O(5), Cu(2)O, NiO, Fe(2)O(3)), silicon and germanium nanowires, and group III-V or II-VI based 1D semiconductor nanostructures like GaS and GaN, pure metals as well as 1D hybrid materials and their higher organized architectures (foremost in 3D) will be focussed. These materials have been the most intensively studied within the last 5-10 years with respect to nano-micro integration aspects and their functional and application oriented properties. The critical review should be interesting for a broader scientific community (chemists, physicists, material scientists) interested in synthetic and functional material aspects of 1D materials as well as their integration into next higher organized architectures.

[1]  Jun Li,et al.  Preparation of Nucleic Acid Functionalized Carbon Nanotube Arrays , 2002 .

[2]  Jae-Young Choi,et al.  Fully Rollable Transparent Nanogenerators Based on Graphene Electrodes , 2010, Advanced materials.

[3]  Xingzhong Zhao,et al.  Enhanced field emission from three-dimensional patterned carbon nanotube arrays grown on flexible carbon cloth , 2012 .

[4]  X. W. Sun,et al.  Enzymatic glucose biosensor based on ZnO nanorod array grown by hydrothermal decomposition , 2006 .

[5]  P. Ajayan,et al.  Experimental observation of extremely weak optical scattering from an interlocking carbon nanotube array. , 2011, Applied optics.

[6]  S. Kishimoto,et al.  Flexible high-performance carbon nanotube integrated circuits. , 2011, Nature nanotechnology.

[7]  H. Liu,et al.  Free-standing 3D polyaniline-CNT/Ni-fiber hybrid electrodes for high-performance supercapacitors. , 2012, Nanoscale.

[8]  H. Kwon,et al.  Gram‐Scale Synthesis of Cu2O Nanocubes and Subsequent Oxidation to CuO Hollow Nanostructures for Lithium‐Ion Battery Anode Materials , 2009 .

[9]  Shui-Tong Lee,et al.  Transmission electron microscopy evidence of the defect structure in Si nanowires synthesized by laser ablation , 1998 .

[10]  J. Greer,et al.  In situ Mechanical Testing Reveals Periodic Buckle Nucleation and Propagation in Carbon Nanotube Bundles , 2010 .

[11]  Zhong Lin Wang,et al.  Large-Scale Hexagonal-Patterned Growth of Aligned ZnO Nanorods for Nano-optoelectronics and Nanosensor Arrays. , 2004, Nano letters.

[12]  B. Korgel,et al.  Nanocrystal-mediated crystallization of silicon and germanium nanowires in organic solvents: the role of catalysis and solid-phase seeding. , 2006, Angewandte Chemie.

[13]  P. Thony,et al.  Full process for integrating silicon nanowire arrays into solar cells , 2009 .

[14]  Localized growth and in situ integration of nanowires for device applications. , 2012, Chemical communications.

[15]  Kui‐Qing Peng,et al.  Fabrication of Large‐Area Silicon Nanowire p–n Junction Diode Arrays , 2004 .

[16]  S. Fan,et al.  Silicon nanowires grown on iron-patterned silicon substrates , 2000 .

[17]  E. Samulski,et al.  Fabrication and characterization of nanotubular semiconductor oxides In2O3 and Ga2O3 , 2001 .

[18]  Peidong Yang,et al.  Silicon Vertically Integrated Nanowire Field Effect Transistors , 2006 .

[19]  P. Ajayan,et al.  Flexible energy storage devices based on nanocomposite paper , 2007, Proceedings of the National Academy of Sciences.

[20]  Tae‐Woo Lee,et al.  Growth, detachment and transfer of highly-ordered TiO2 nanotube arrays: use in dye-sensitized solar cells. , 2008, Chemical communications.

[21]  Ulrich Gosele Obituary , 2011 .

[22]  Dongsheng Xu,et al.  ELECTROCHEMICALLY INDUCED SOL-GEL PREPARATION OF SINGLE-CRYSTALLINE TIO2NANOWIRES , 2002 .

[23]  D. Barreca,et al.  Manufacturing of inorganic nanomaterials: concepts and perspectives. , 2012, Nanoscale.

[24]  Gengfeng Zheng,et al.  Electrical detection of single viruses. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[25]  P. Ajayan,et al.  A general synthetic approach to interconnected nanowire/nanotube and nanotube/nanowire/nanotube heterojunctions with branched topology. , 2009, Angewandte Chemie.

[26]  Thomas E Mallouk,et al.  Template-grown metal nanowires. , 2006, Inorganic chemistry.

[27]  S. Chang,et al.  Cu2O/n-ZnO nanowire solar cells on ZnO:Ga/glass templates , 2007 .

[28]  Liejin Guo,et al.  Vertically aligned WO₃ nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis and photoelectrochemical properties. , 2011, Nano letters.

[29]  Jian Jiang,et al.  Direct growth of SnO2nanorod array electrodes for lithium-ion batteries , 2009 .

[30]  Craig A. Grimes,et al.  TiO2 Nanotube Arrays of 1000 μm Length by Anodization of Titanium Foil: Phenol Red Diffusion , 2007 .

[31]  Peng Chen,et al.  CMOS-Compatible nanowire sensor arrays for detection of cellular bioelectricity. , 2008, Small.

[32]  Gengfeng Zheng,et al.  Detection, Stimulation, and Inhibition of Neuronal Signals with High-Density Nanowire Transistor Arrays , 2006, Science.

[33]  Giacomo Mariani,et al.  Patterned radial GaAs nanopillar solar cells. , 2011, Nano letters.

[34]  C. Grimes,et al.  Self-assembled TiO(2) nanotube arrays by anodization of titanium in diethylene glycol: approach to extended pore widening. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[35]  Zhifu Liu,et al.  Microstructure and H2 gas sensing properties of undoped and Pd-doped SnO2 nanowires , 2009 .

[36]  N. Newman,et al.  Defect annihilation in AlN thin films by ultrahigh temperature processing , 2000 .

[37]  Mashkoor Ahmad,et al.  Conductivity enhancement by slight indium doping in ZnO nanowires for optoelectronic applications , 2009 .

[38]  B. Wei,et al.  Luminescence of carbon nanotube bulbs , 2007 .

[39]  Y. Sung,et al.  Controlled growth of high-quality TiO2 nanowires on sapphire and silica , 2006 .

[40]  S. T. Lee,et al.  p-Type ZnO nanowire arrays. , 2008, Nano letters.

[41]  Supratik Guha,et al.  Characteristics of vapor–liquid–solid grown silicon nanowire solar cells , 2009 .

[42]  Takashi Fukui,et al.  Selective-area growth of vertically aligned GaAs and GaAs/AlGaAs core–shell nanowires on Si(111) substrate , 2009, Nanotechnology.

[43]  P. Xu,et al.  High aspect ratio In2O3 nanowires: Synthesis, mechanism and NO2 gas-sensing properties , 2008 .

[44]  T. Topuria,et al.  Patterned epitaxial vapor-liquid-solid growth of silicon nanowires on Si(111) using silane , 2008 .

[45]  Roya Maboudian,et al.  Suspended mechanical structures based on elastic silicon nanowire arrays. , 2007, Nano letters.

[46]  Shoou-Jinn Chang,et al.  Highly sensitive ZnO nanowire ethanol sensor with Pd adsorption , 2007 .

[47]  Y. Bando,et al.  WO3 nanorods/nanobelts synthesized via physical vapor deposition process , 2003 .

[48]  O. Nur,et al.  Zinc oxide nanowires: controlled low temperature growth and some electrochemical and optical nano-devices , 2009 .

[49]  S. Barth,et al.  Molecule-based chemical vapor growth of aligned SnO2 nanowires and branched SnO2/V2O5 heterostructures. , 2007, Small.

[50]  C. Thomsen,et al.  Acetylene: A Key Growth Precursor for Single-Walled Carbon Nanotube Forests , 2009 .

[51]  D. Grützmacher,et al.  MOVPE of n-doped GaAs and modulation doped GaAs/AlGaAs nanowires , 2010 .

[52]  P. Chan,et al.  Carbon nanotube thermal interface material for high-brightness light-emitting-diode cooling , 2008, Nanotechnology.

[53]  Omkaram Nalamasu,et al.  Effects of compressive strains on electrical conductivities of a macroscale carbon nanotube block , 2007 .

[54]  Tae-Wook Kim,et al.  Morphology- and orientation-controlled gallium arsenide nanowires on silicon substrates. , 2007, Nano letters.

[55]  Mukundan Thelakkat,et al.  Highly efficient solar cells using TiO(2) nanotube arrays sensitized with a donor-antenna dye. , 2008, Nano letters.

[56]  Jun Li,et al.  Epitaxial Directional Growth of Indium-Doped Tin Oxide Nanowire Arrays , 2003 .

[57]  D. Blank,et al.  Nanoelectronics: Oxides offer the write stuff. , 2009, Nature nanotechnology.

[58]  Bin Liu,et al.  Growth of oriented single-crystalline rutile TiO(2) nanorods on transparent conducting substrates for dye-sensitized solar cells. , 2009, Journal of the American Chemical Society.

[59]  Guanghai Li,et al.  Ordered indium-oxide nanowire arrays and their photoluminescence properties , 2001 .

[60]  Andrew G. Gillies,et al.  Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. , 2010, Nature materials.

[61]  Wei Lu,et al.  High-performance transparent conducting oxide nanowires. , 2006, Nano letters.

[62]  Changhong Liu,et al.  High‐Density, Ordered Ultraviolet Light‐Emitting ZnO Nanowire Arrays , 2003 .

[63]  Craig A. Grimes,et al.  Anodic Growth of Highly Ordered TiO2 Nanotube Arrays to 134 μm in Length , 2006 .

[64]  Yunjie Yan,et al.  Aligned single-crystalline Si nanowire arrays for photovoltaic applications. , 2005, Small.

[65]  Martin Moskovits,et al.  CHEMICAL SENSING AND CATALYSIS BY ONE-DIMENSIONAL METAL-OXIDE NANOSTRUCTURES , 2004 .

[66]  C. M. Li,et al.  ZnO nanorods-enhanced fluorescence for sensitive microarray detection of cancers in serum without additional reporter-amplification. , 2011, Biosensors & bioelectronics.

[67]  Hao Yan,et al.  Layer-by-layer assembly of nanowires for three-dimensional, multifunctional electronics. , 2007, Nano letters.

[68]  Patrik Schmuki,et al.  High-aspect-ratio TiO2 nanotubes by anodization of titanium. , 2005, Angewandte Chemie.

[69]  H. Shtrikman,et al.  Structural phase control in self-catalyzed growth of GaAs nanowires on silicon (111). , 2010, Nano letters.

[70]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[71]  J. Macák,et al.  Magnetically guided titania nanotubes for site-selective photocatalysis and drug release. , 2009, Angewandte Chemie.

[72]  M. Sunkara,et al.  Synthesis of sub-20-nm-sized bismuth 1-D structures using gallium-bismuth systems. , 2005, The journal of physical chemistry. B.

[73]  X. W. Sun,et al.  A ZnO nanorod inorganic/organic heterostructure light-emitting diode emitting at 342 nm. , 2008, Nano letters.

[74]  Guohua Chen,et al.  Photoeletrocatalytic activity of a Cu2O-loaded self-organized highly oriented TiO2 nanotube array electrode for 4-chlorophenol degradation. , 2009, Environmental science & technology.

[75]  J. Wu,et al.  Thermal evaporation growth and the luminescence property of TiO2 nanowires , 2005 .

[76]  Roya Maboudian,et al.  Si Nanowire Bridges in Microtrenches: Integration of Growth into Device Fabrication , 2005 .

[77]  S. T. Lee,et al.  Vertically aligned p-type single-crystalline GaN nanorod arrays on n-type Si for heterojunction photovoltaic cells. , 2008, Nano letters.

[78]  S. Ingebrandt,et al.  Fabrication and application of silicon nanowire transistor arrays for biomolecular detection , 2010 .

[79]  Zhong Lin Wang,et al.  Piezoelectric nanogenerator using p-type ZnO nanowire arrays. , 2009, Nano letters.

[80]  Dong‐Wan Kim,et al.  Long-term, high-rate lithium storage capabilities of TiO2 nanostructured electrodes using 3D self-supported indium tin oxide conducting nanowire arrays , 2011 .

[81]  Andrei Ghicov,et al.  Photoresponse in the visible range from Cr doped TiO2 nanotubes , 2007 .

[82]  J. J. Schneider,et al.  A chip-sized nanoscale monolithic chemical reactor. , 2008, Angewandte Chemie.

[83]  Roya Maboudian,et al.  Growth of branching Si nanowires seeded by Au–Si surface migration , 2008 .

[84]  Craig A Grimes,et al.  Visible to near-infrared light harvesting in TiO2 nanotube array-P3HT based heterojunction solar cells. , 2009, Nano letters.

[85]  A. Boukai,et al.  Oligo- and polythiophene/ZnO hybrid nanowire solar cells. , 2010, Nano letters (Print).

[86]  Wei Zhou,et al.  Structural variations and hydrogen storage properties of Ca5Si3 with Cr5B3-type structure , 2008 .

[87]  I-Cherng Chen,et al.  Laterally grown ZnO nanowire ethanol gas sensors , 2007 .

[88]  Carl V. Thompson,et al.  Metal‐Catalyzed Etching of Vertically Aligned Polysilicon and Amorphous Silicon Nanowire Arrays by Etching Direction Confinement , 2010 .

[89]  R. Street,et al.  Hybrid Si nanowire/amorphous silicon FETs for large-area image sensor arrays. , 2011, Nano letters.

[90]  R. Ruoff,et al.  Chemical Vapor Deposition Based Synthesis of Carbon Nanotubes and Nanofibers Using a Template Method , 1998 .

[91]  Robert C. Davis,et al.  Integrated three-dimensional microelectromechanical devices from processable carbon nanotube wafers. , 2008, Nature nanotechnology.

[92]  H. Koinuma,et al.  Optical Properties of ZnO:Al Epilayers and of Undoped Epilayers Capped by Wider‐Gap MgZnO Grown by Laser MBE , 2002 .

[93]  O. Brandt,et al.  Suitability of Au- and self-assisted GaAs nanowires for optoelectronic applications. , 2011, Nano letters.

[94]  Vikram Kumar,et al.  Fabrication of silicon nanowire arrays based solar cell with improved performance , 2011 .

[95]  Z. Pan,et al.  Aligned ZnO nanorod arrays grown directly on zinc foils and zinc spheres by a low-temperature oxidization method. , 2009, ACS nano.

[96]  Michael J. Bronikowski,et al.  Longer Nanotubes at Lower Temperatures: The Influence of Effective Activation Energies on Carbon Nanotube Growth by Thermal Chemical Vapor Deposition† , 2007 .

[97]  Nathan S. Lewis,et al.  Growth of vertically aligned Si wire arrays over large areas (>1 cm^2) with Au and Cu catalysts , 2007 .

[98]  Kelly P. Knutsen,et al.  Single gallium nitride nanowire lasers , 2002, Nature materials.

[99]  Guozhong Cao,et al.  ZnO Nanostructures for Dye‐Sensitized Solar Cells , 2009 .

[100]  H. Lüth,et al.  Nucleation and growth of GaN nanowires on Si(111) performed by molecular beam epitaxy. , 2007, Nano letters.

[101]  V. Singh,et al.  MWCNT–polymer composites as highly sensitive and selective room temperature gas sensors , 2011, Nanotechnology.

[102]  Aleksandra Radenovic,et al.  ZnO-Al2O3 and ZnO-TiO2 core-shell nanowire dye-sensitized solar cells. , 2006, The journal of physical chemistry. B.

[103]  K. Buddharaju,et al.  Chip-Level Thermoelectric Power Generators Based on High-Density Silicon Nanowire Array Prepared With Top-Down CMOS Technology , 2011, IEEE Electron Device Letters.

[104]  Hidetoshi Miura,et al.  Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells. , 2008, ACS nano.

[105]  David M. Sherman,et al.  Band-gap measurements of bulk and nanoscale hematite by soft x-ray spectroscopy , 2009 .

[106]  Tomohiro Shimizu,et al.  Synthesis of Vertical High‐Density Epitaxial Si(100) Nanowire Arrays on a Si(100) Substrate Using an Anodic Aluminum Oxide Template , 2007 .

[107]  Zhiyong Fan,et al.  Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing. , 2008, Nano letters.

[108]  Shinji Fujimoto,et al.  On wafer TiO2 nanotube-layer formation by anodization of Ti-films on Si , 2006 .

[109]  Zhong Lin Wang,et al.  Spontaneous Polarization-Induced Nanohelixes, Nanosprings, and Nanorings of Piezoelectric Nanobelts , 2003 .

[110]  J. Rand,et al.  Silicon Nanowire Solar Cells , 2007 .

[111]  J. Ferraris,et al.  Harvesting waste thermal energy using a carbon-nanotube-based thermo-electrochemical cell. , 2010, Nano letters.

[112]  D. English,et al.  Wavelength-resolved studies of förster energy transfer in azobenzene-modified conjugated polymers : The competing roles of exciton migration and spectral resonance , 2007 .

[113]  Michael G. Spencer,et al.  Heteroepitaxy of ZnO on GaN and its implications for fabrication of hybrid optoelectronic devices , 1998 .

[114]  Rupert Huber,et al.  TEMPLATE SYNTHESIS OF NANOWIRES IN POROUS POLYCARBONATE MEMBRANES: ELECTROCHEMISTRY AND MORPHOLOGY , 1997 .

[115]  T. Tseng,et al.  Single-crystalline MgxZn1−xO (0≤x≤0.25) nanowires on glass substrates obtained by a hydrothermal method: growth, structure and electrical characteristics , 2005 .

[116]  Wendy C. Crone,et al.  Magnetic Manipulation of Copper−Tin Nanowires Capped with Nickel Ends , 2004 .

[117]  R. Savu,et al.  Low-temperature, self-nucleated growth of indium–tin oxide nanostructures by pulsed laser deposition on amorphous substrates , 2006 .

[118]  Ling-Dong Sun,et al.  Control of ZnO Morphology via a Simple Solution Route , 2002 .

[119]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[120]  Sangmin Jeon,et al.  Enhanced mass sensitivity of ZnO nanorod-grown quartz crystal microbalances , 2009 .

[121]  Charles M. Lieber,et al.  A laser ablation method for the synthesis of crystalline semiconductor nanowires , 1998, Science.

[122]  J. Myoung,et al.  Random network transistor arrays of embedded ZnO nanorods in ion-gel gate dielectric , 2010 .

[123]  Bin Sun,et al.  Recent advances in solar cells based on one-dimensional nanostructure arrays. , 2012, Nanoscale.

[124]  R. Peng,et al.  Electrodeposition of Periodically Nanostructured Straight Cobalt Filament Arrays , 2009 .

[125]  Michael C. McAlpine,et al.  Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors. , 2007, Nature materials.

[126]  K. Hata,et al.  Dual porosity single-walled carbon nanotube material. , 2009, Nano letters.

[127]  Yiying Wu,et al.  Room-Temperature Ultraviolet Nanowire Nanolasers , 2001, Science.

[128]  Eray S. Aydil,et al.  Nanowire-based dye-sensitized solar cells , 2005 .

[129]  M. Meyyappan,et al.  Bottom-up approach for carbon nanotube interconnects , 2003 .

[130]  C. Sow,et al.  Aligned Tin Oxide Nanonets for High-Performance Transistors , 2010 .

[131]  Nitin Kumar,et al.  Highly sensitive biomolecular fluorescence detection using nanoscale ZnO platforms. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[132]  Charles R. Martin,et al.  Sol−Gel Template Synthesis of Semiconductor Oxide Micro- and Nanostructures , 1997 .

[133]  X. Sun,et al.  Fast switching electrochromic display using a viologen-modified ZnO nanowire array electrode. , 2008, Nano letters.

[134]  M. Durstock,et al.  Fabrication of highly-ordered TiO(2) nanotube arrays and their use in dye-sensitized solar cells. , 2009, Nano letters.

[135]  Zhong Lin Wang,et al.  Microfibre–nanowire hybrid structure for energy scavenging , 2008, Nature.

[136]  Zhiyong Fan,et al.  Large-scale, heterogeneous integration of nanowire arrays for image sensor circuitry , 2008, Proceedings of the National Academy of Sciences.

[137]  Xiaohua Shao,et al.  Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years , 2008, Nature.

[138]  M. Reed,et al.  Indium oxide nanostructures , 2006 .

[139]  Takashi Fukui,et al.  Fabrication and characterization of freestanding GaAs/AlGaAs core-shell nanowires and AlGaAs nanotubes by using selective-area metalorganic vapor phase epitaxy , 2005 .

[140]  J. Rogers,et al.  High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. , 2007, Nature nanotechnology.

[141]  Zhong Lin Wang,et al.  Pattern and feature designed growth of ZnO nanowire arrays for vertical devices. , 2006, The journal of physical chemistry. B.

[142]  M. Loy,et al.  High-quality ZnO nanowire arrays directly fabricated from photoresists. , 2009, ACS nano.

[143]  A. Kleinhammes,et al.  The structure of multilayered titania nanotubes based on delaminated anatase , 2008 .

[144]  Jing Liang,et al.  Template-Directed Materials for Rechargeable Lithium-Ion Batteries† , 2008 .

[145]  D. Thompson,et al.  GaAs core--shell nanowires for photovoltaic applications. , 2009, Nano letters.

[146]  W. Tremel,et al.  Alignment of tellurium nanorods via a magnetization-alignment-demagnetization ("MAD") process assisted by an external magnetic field. , 2009, ACS nano.

[147]  I. Park,et al.  Top-down fabricated silicon nanowire sensors for real-time chemical detection , 2010, Nanotechnology.

[148]  Controlled growth of gallium nitride single-crystal nanowires using a chemical vapor deposition method , 2003 .

[149]  P. Ajayan,et al.  Nanostructured VO2 photocatalysts for hydrogen production. , 2008, ACS nano.

[150]  U. Bach,et al.  Highly efficient photocathodes for dye-sensitized tandem solar cells. , 2010, Nature materials.

[151]  P. Cui,et al.  Direct electrodeposition of highly dense Bi/Sb superlattice nanowire arrays. , 2005, Journal of the American Chemical Society.

[152]  J. Kong,et al.  Spinning and Processing Continuous Yarns from 4‐Inch Wafer Scale Super‐Aligned Carbon Nanotube Arrays , 2006 .

[153]  D. Kim,et al.  Growth of GaN Nanorods by a Hydride Vapor Phase Epitaxy Method , 2002 .

[154]  T. Wojtowicz,et al.  Ferromagnetic GaAs/GaMnAs core-shell nanowires grown by molecular beam epitaxy. , 2009, Nano letters.

[155]  Craig A Grimes,et al.  Enhanced photocleavage of water using titania nanotube arrays. , 2005, Nano letters.

[156]  Saurabh Chopra,et al.  Carbon-nanotube-based resonant-circuit sensor for ammonia , 2002 .

[157]  M. Graetzel,et al.  Highly ordered SnO2 nanorod arrays from controlled aqueous growth. , 2004, Angewandte Chemie.

[158]  M. Thelakkat,et al.  Synthesis, spectral, electrochemical and photovoltaic properties of novel heteroleptic polypyridyl ruthenium(II) donor-antenna dyes , 2009 .

[159]  T. Mallouk,et al.  Electrochemical Growth of Single-Crystal Metal Nanowires via a Two-Dimensional Nucleation and Growth Mechanism. , 2003, Nano letters.

[160]  Kong,et al.  Nanotube molecular wires as chemical sensors , 2000, Science.

[161]  H. Kuo,et al.  Fabrication of InGaN/GaN nanorod light-emitting diodes with self-assembled Ni metal islands , 2007 .

[162]  Dejun Fu,et al.  Photoluminescence studies of GaN nanorods on Si (111) substrates grown by molecular-beam epitaxy , 2004 .

[163]  A. Majumdar,et al.  Enhanced thermoelectric performance of rough silicon nanowires , 2008, Nature.

[164]  Dongmok Whang,et al.  Large-scale hierarchical organization of nanowire arrays for integrated nanosystems , 2003 .

[165]  J. Wu,et al.  Formation and photoluminescence of single-crystalline rutile TiO2 nanowires synthesized by thermal evaporation , 2006 .

[166]  S. Barman,et al.  Self-Sorted, Aligned Nanotube Networks for Thin-Film Transistors , 2008, Science.

[167]  A. Bard,et al.  Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. , 2006, Nano letters.

[168]  C. Grimes,et al.  P-type Cu--Ti--O nanotube arrays and their use in self-biased heterojunction photoelectrochemical diodes for hydrogen generation. , 2008, Nano letters.

[169]  Kenji Hiruma,et al.  GaAs/AlGaAs core multishell nanowire-based light-emitting diodes on Si. , 2010, Nano letters.

[170]  Woo Y. Lee,et al.  Template-assisted large-scale ordered arrays of ZnO pillars for optical and piezoelectric applications. , 2006, Small.

[171]  Donhee Ham,et al.  Nanotechnology: High-speed integrated nanowire circuits , 2005, Nature.

[172]  Peter J. Pauzauskie,et al.  Crystallographic alignment of high-density gallium nitride nanowire arrays , 2004, Nature materials.

[173]  R. Gordon Criteria for Choosing Transparent Conductors , 2000 .

[174]  Fabrication of In-doped SnO2 nanowire arrays and its field emission investigations , 2010 .

[175]  Jenshan Lin,et al.  Hydrogen-selective sensing at room temperature with ZnO nanorods , 2005 .

[176]  Tejal A Desai,et al.  Whole genome expression analysis reveals differential effects of TiO2 nanotubes on vascular cells. , 2010, Nano letters.

[177]  H. E. Unalan,et al.  Zinc Oxide Nanowire Networks for Macroelectronic Devices , 2008, 2008 8th IEEE Conference on Nanotechnology.

[178]  Jian-jang Huang,et al.  GaN nanorod light emitting diode arrays with a nearly constant electroluminescent peak wavelength. , 2008, Optics express.

[179]  Craig A. Grimes,et al.  High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. , 2009, Nano letters.

[180]  Meng-Yen Tsai,et al.  ZnO‐Coated Carbon Nanotubes: Flexible Piezoelectric Generators , 2011, Advanced materials.

[181]  Mohammad Khaja Nazeeruddin,et al.  Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes , 1993 .

[182]  Chun-Hsiang Chang,et al.  High performance InGaN/GaN nanorod light emitting diode arrays fabricated by nanosphere lithography and chemical mechanical polishing processes. , 2010, Optics express.

[183]  Peidong Yang,et al.  Silicon nanowire radial p-n junction solar cells. , 2008, Journal of the American Chemical Society.

[184]  R. S. Wagner,et al.  VAPOR‐LIQUID‐SOLID MECHANISM OF SINGLE CRYSTAL GROWTH , 1964 .

[185]  K. Hata,et al.  Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes , 2006, Nature materials.

[186]  Craig A Grimes,et al.  Self-assembled hybrid polymer-TiO2 nanotube array heterojunction solar cells. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[187]  Joachim Goschnick,et al.  A gradient microarray electronic nose based on percolating SnO(2) nanowire sensing elements. , 2007, Nano letters.

[188]  Bruce Dunn,et al.  Three-dimensional electrodes and battery architectures , 2011 .

[189]  Mei Zhang,et al.  Mechanoelectrical Force Sensors Using Twisted Yarns of Carbon Nanotubes , 2011, IEEE/ASME Transactions on Mechatronics.

[190]  Di Gao,et al.  Preferential Growth of Long ZnO Nanowire Array and Its Application in Dye-Sensitized Solar Cells , 2010 .

[191]  Shaoli Fang,et al.  Underwater sound generation using carbon nanotube projectors. , 2010, Nano letters.

[192]  Thin film transistors of single-walled carbon nanotubes grown directly on glass substrates. , 2007, Nanotechnology.

[193]  J. Heath,et al.  Bridging Dimensions: Demultiplexing Ultrahigh-Density Nanowire Circuits , 2005, Science.

[194]  Lars Samuelson,et al.  Growth of one-dimensional nanostructures in MOVPE , 2004 .

[195]  T. Maggos,et al.  Photocatalytic degradation of gas pollutants on self-assembled titania nanotubes , 2010 .

[196]  Henning Sirringhaus,et al.  Solution-processed zinc oxide field-effect transistors based on self-assembly of colloidal nanorods. , 2005, Nano letters.

[197]  Tomoji Kawai,et al.  Nonvolatile bipolar resistive memory switching in single crystalline NiO heterostructured nanowires. , 2009, Journal of the American Chemical Society.

[198]  Kai Wang,et al.  H2S Detection by Vertically Aligned CuO Nanowire Array Sensors , 2008 .

[199]  Paul Steinvurzel,et al.  Multicolored vertical silicon nanowires. , 2011, Nano letters.

[200]  Jan Meiss,et al.  Flexible inorganic nanowire light-emitting diode. , 2008, Nano letters.

[201]  Jian Zhang,et al.  Structural and optical characteristics of silicon nanowires fabricated by wet chemical etching , 2011 .

[202]  L. Vayssieres An aqueous solution approach to advanced metal oxide arrays on substrates , 2007 .

[203]  Dmitri Golberg,et al.  Inorganic semiconductor nanostructures and their field-emission applications , 2008 .

[204]  T. Ohgai,et al.  CdTe semiconductor nanowires and NiFe ferro-magnetic metal nanowires electrodeposited into cylindrical nano-pores on the surface of anodized aluminum , 2005 .

[205]  A. Navitski,et al.  Gas phase synthesis and field emission properties of 3D aligned double walled carbon nanotube/anatase hybrid architectures. , 2011, Nanoscale.

[206]  W. Warta,et al.  Solar cell efficiency tables (version 36) , 2010 .

[207]  Heon-Jin Choi,et al.  Single-crystal gallium nitride nanotubes , 2003, Nature.

[208]  Xiao Wei Sun,et al.  Hydrothermally grown oriented ZnO nanorod arrays for gas sensing applications , 2006 .

[209]  Benjamin H. Meekins,et al.  Got TiO2 nanotubes? Lithium ion intercalation can boost their photoelectrochemical performance. , 2009, ACS nano.

[210]  Peidong Yang,et al.  Controlled growth of Si nanowire arrays for device integration. , 2005, Nano letters.

[211]  Timothy Sands,et al.  Faceted and vertically aligned GaN nanorod arrays fabricated without catalysts or lithography. , 2005, Nano letters.

[212]  Mahendra K. Sunkara,et al.  Inorganic Nanowires , 2009 .

[213]  Margaret A. K. Ryan,et al.  CdSe‐Sensitized p‐CuSCN/Nanowire n‐ZnO Heterojunctions , 2005 .

[214]  C. Grimes,et al.  Application of highly-ordered TiO2 nanotube-arrays in heterojunction dye-sensitized solar cells , 2006 .

[215]  Carl P. Tripp,et al.  Template‐Assisted Fabrication of Dense, Aligned Arrays of Titania Nanotubes with Well‐Controlled Dimensions on Substrates , 2004 .

[216]  Sangtae Kim,et al.  Direct formation of catalyst-free ZnO nanobridge devices on an etched Si substrate using a thermal evaporation method. , 2006, Nano letters.

[217]  W. Park,et al.  Electroluminescence in n‐ZnO Nanorod Arrays Vertically Grown on p‐GaN , 2004 .

[218]  S. Hersee,et al.  The controlled growth of GaN nanowires. , 2006, Nano letters.

[219]  S. Mohney,et al.  Fabrication and electrical properties of si nanowires synthesized by Al catalyzed vapor-liquid-solid growth. , 2009, Nano letters.

[220]  Jan M. Macak,et al.  Smooth anodic TiO2 nanotubes. , 2005, Angewandte Chemie.

[221]  Ying Liu,et al.  Growth of Aligned Square‐Shaped SnO2 Tube Arrays , 2005 .

[222]  L. Samuelson,et al.  Monolithic GaAs/InGaP nanowire light emitting diodes on silicon , 2008, Nanotechnology.

[223]  Jing Zhu,et al.  Enhanced photoluminescence and field-emission behavior of vertically well aligned arrays of In-doped ZnO Nanowires. , 2011, ACS applied materials & interfaces.

[224]  M. Terrones,et al.  Architectures from aligned nanotubes using controlled micropatterning of silicon substrates and electrochemical methods. , 2007, Small.

[225]  Heon-Jin Choi,et al.  Large-scale assembly of silicon nanowire network-based devices using conventional microfabrication facilities. , 2008, Nano letters.

[226]  Yang Liu,et al.  Electrolyte stability determines scaling limits for solid-state 3D Li ion batteries. , 2011, Nano letters.

[227]  C. Robert-Goumet,et al.  Fast growth synthesis of GaAs nanowires with exceptional length. , 2010, Nano letters.

[228]  Zhongyi Guo,et al.  A waferscale Si wire solar cell using radial and bulk p–n junctions , 2010, Nanotechnology.

[229]  Zhiyuan Gao,et al.  GaN nanowire arrays for high-output nanogenerators. , 2010, Journal of the American Chemical Society.

[230]  Sungho Jin,et al.  Enhanced cellular mobility guided by TiO2 nanotube surfaces. , 2008, Nano letters.

[231]  A. Djurišić,et al.  GaN-nanowire-based dye-sensitized solar cells , 2010 .

[232]  Z. Ren,et al.  Enhanced Field Emission of ZnO Nanowires , 2004 .

[233]  B. Wang,et al.  Bulk-quantity synthesis and self-catalytic VLS growth of SnO2 nanowires by lower-temperature evaporation , 2003 .

[234]  Jun Wang,et al.  Organic heterojunction and its application for double channel field-effect transistors , 2005 .

[235]  P. Yang,et al.  Metalorganic Chemical Vapor Deposition Route to GaN Nanowires with Triangular Cross Sections , 2003 .

[236]  Zhong Lin Wang,et al.  Direct-Current Nanogenerator Driven by Ultrasonic Waves , 2007, Science.

[237]  Zhong Lin Wang,et al.  Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays , 2006, Science.

[238]  J. Piqueras,et al.  Three dimensional nanowire networks and complex nanostructures of indium oxide , 2006 .

[239]  Xiangfeng Duan,et al.  High-performance thin-film transistors using semiconductor nanowires and nanoribbons , 2003, Nature.

[240]  J. Macák,et al.  TiO2 nanotube layers: Dose effects during nitrogen doping by ion implantation , 2006 .

[241]  C. Lee,et al.  An MOCVD route to In2O3 one-dimensional materials with novel morphologies , 2005 .

[242]  Chao Li,et al.  Laser Ablation Synthesis and Electron Transport Studies of Tin Oxide Nanowires , 2003 .

[243]  Jacob T. Robinson,et al.  Vertical nanowire electrode arrays as a scalable platform for intracellular interfacing to neuronal circuits. , 2012, Nature nanotechnology.

[244]  Jong Seon Park,et al.  Bicrystalline indium oxide nanobelts , 2005 .

[245]  Zhong-Lin Wang Towards Self‐Powered Nanosystems: From Nanogenerators to Nanopiezotronics , 2008 .

[246]  K. Hata,et al.  Carbon Nanotubes with Temperature-Invariant Viscoelasticity from –196° to 1000°C , 2010, Science.

[247]  Bozhi Tian,et al.  Nanowire transistor arrays for mapping neural circuits in acute brain slices , 2010, Proceedings of the National Academy of Sciences.

[248]  Tae Geun Kim,et al.  Enhanced Photochemical Response of TiO2/CdSe Heterostructured Nanowires , 2007 .

[249]  Woo Lee,et al.  Au/Ag bilayered metal mesh as a si etching catalyst for controlled fabrication of si nanowires. , 2011, ACS nano.

[250]  Nitin Kumar,et al.  Ultrasensitive DNA sequence detection using nanoscale ZnO sensor arrays , 2006 .

[251]  Young Joon Hong,et al.  GaN/In1-xGaxN/GaN/ZnO nanoarchitecture light emitting diode microarrays , 2009 .

[252]  P. Ajayan,et al.  Controlled manipulation of giant hybrid inorganic nanowire assemblies. , 2008, Nano letters.

[253]  G. Cao,et al.  Fabrication and Li+-intercalation properties of V2O5-TiO2 composite nanorod arrays , 2006 .

[254]  M. Dresselhaus,et al.  New Directions for Low‐Dimensional Thermoelectric Materials , 2007 .

[255]  John C. Roberts,et al.  Fast electrical detection of Hg(II) ions with AlGaN∕GaN high electron mobility transistors , 2007 .

[256]  J. Macák,et al.  High-contrast electrochromic switching using transparent lift-off layers of self-organized TiO2 nanotubes. , 2008, Small.

[257]  Arthur P. Ramirez,et al.  Oxide Electronics Emerge , 2007, Science.

[258]  Ching-Fuh Lin,et al.  Morphology Dependence of Silicon Nanowire/Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) Heterojunction Solar Cells , 2010 .

[259]  C. B. Carter,et al.  Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices. , 2007, Nano letters.

[260]  Magnus Willander,et al.  ZnO nanorods as an intracellular sensor for pH measurements , 2007 .

[261]  Kam Sing Wong,et al.  ZnO nanobelt arrays grown directly from and on zinc substrates: synthesis, characterization, and applications. , 2005, The journal of physical chemistry. B.

[262]  Wenjun Zhang,et al.  Silicon nanowires for rechargeable lithium-ion battery anodes , 2008 .

[263]  Wei Lu,et al.  Fully transparent thin-film transistor devices based on SnO2 nanowires. , 2007, Nano letters.

[264]  Ji-Yong Park,et al.  Characterizations of individual ZnMgO nanowires synthesized by a vapor‐transport method , 2010 .

[265]  Chongwu Zhou,et al.  Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices , 2004 .

[266]  F. Hong,et al.  The fabrication of ZnO nanowire field-effect transistors by roll-transfer printing , 2009, Nanotechnology.

[267]  Y. Chen,et al.  Field-emission from long SnO2 nanobelt arrays , 2004 .

[268]  T. Desai,et al.  Long-term small molecule and protein elution from TiO2 nanotubes. , 2009, Nano letters.

[269]  Z. Ren,et al.  Self-assembly of semiconducting oxide nanowires, nanorods, and nanoribbons , 2003 .

[270]  A. Govindaraj,et al.  Oxide nanotubes prepared using carbon nanotubes as templates , 1997 .

[271]  C. Granqvist,et al.  Transparent and conducting ITO films: new developments and applications , 2002 .

[272]  C. Li,et al.  Selective functionalization of In2O3 nanowire mat devices for biosensing applications. , 2005, Journal of the American Chemical Society.

[273]  James S. Harris,et al.  Ti-catalyzed Si nanowires by chemical vapor deposition: Microscopy and growth mechanisms , 2001 .

[274]  Krisztian Kordas,et al.  Chip cooling with integrated carbon nanotube microfin architectures , 2007 .

[275]  Douglas R. Kauffman,et al.  Carbon nanotube gas and vapor sensors. , 2008, Angewandte Chemie.

[276]  Patrik Schmuki,et al.  Self-organized TiO2 nanotube layers as highly efficient photocatalysts. , 2007, Small.

[277]  Craig A Grimes,et al.  Vertically oriented Ti-Fe-O nanotube array films: toward a useful material architecture for solar spectrum water photoelectrolysis. , 2007, Nano letters.

[278]  Seung-Ho Lee,et al.  UV photovoltaic cells fabricated utilizing GaN nanorod/Si heterostructures , 2010 .

[279]  Costas P. Grigoropoulos,et al.  ZnO nanowire network transistor fabrication on a polymer substrate by low-temperature, all-inorganic nanoparticle solution process , 2008 .

[280]  Huimin Zhao,et al.  Fabrication and characterization of silica/titania nanotubes composite membrane with photocatalytic capability. , 2006, Environmental science & technology.

[281]  Franz Kreupl,et al.  Carbon nanotubes in interconnect applications , 2002 .

[282]  C. Grimes,et al.  Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis details and applications. , 2008, Nano letters.

[283]  John Robertson,et al.  Catalytic chemical vapor deposition of single-wall carbon nanotubes at low temperatures. , 2006, Nano letters.

[284]  R. Wu,et al.  Conductometric chemical sensor based on individual CuO nanowires , 2010, Nanotechnology.

[285]  Zhong Lin Wang,et al.  Growth of Horizonatal ZnO Nanowire Arrays on Any Substrate , 2008 .

[286]  H. Imai,et al.  Direct preparation of anatase TiO2 nanotubes in porous alumina membranes , 1999 .

[287]  D. H. Kim,et al.  Field emission from cone-like single crystalline indium tin oxide nanorods , 2005 .

[288]  Xin Wang,et al.  Platinum nanoparticle decorated silicon nanowires for efficient solar energy conversion. , 2009, Nano letters.

[289]  Young Hee Lee,et al.  Crystalline Ropes of Metallic Carbon Nanotubes , 1996, Science.

[290]  Chan Woong Na,et al.  Comparative structure and optical properties of Ga-, In-, and Sn-doped ZnO nanowires synthesized via thermal evaporation. , 2005, The journal of physical chemistry. B.

[291]  Young Joon Hong,et al.  Flexible Inorganic Nanostructure Light‐Emitting Diodes Fabricated on Graphene Films , 2011, Advanced materials.

[292]  Charles M. Lieber,et al.  Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. , 2005, Nano letters.

[293]  Yang Wang,et al.  Flexible, stretchable, transparent carbon nanotube thin film loudspeakers. , 2008, Nano letters.

[294]  F. Ren,et al.  Electroluminescence from ZnO nanowire/polymer composite p-n junction , 2006 .

[295]  H. Föll,et al.  Silicon nanowires made via macropore etching for superior Li ion batteries , 2011 .

[296]  P. Ajayan,et al.  Carbon nanotube filters , 2004, Nature materials.

[297]  Yueming Sun,et al.  Dye-sensitized solar cells based on oriented ZnO nanowire-covered TiO2 nanoparticle composite film electrodes , 2009 .

[298]  Zongbin Zhao,et al.  Tailoring of three-dimensional carbon nanotube architectures by coupling capillarity-induced assembly with multiple CVD growth , 2011 .

[299]  Joseph Wang Barcoded metal nanowires , 2008 .

[300]  Zhong Lin Wang,et al.  Self-powered nanowire devices. , 2010, Nature nanotechnology.

[301]  Peidong Yang,et al.  Dendritic nanowire ultraviolet laser array. , 2003, Journal of the American Chemical Society.

[302]  Wu Wang,et al.  High-Performance Nanowire Electronics and Photonics on Glass and Plastic Substrates , 2003 .

[303]  D. D. D. Ma,et al.  Silicon Nanowires – Synthesis, Properties, and Applications , 2010 .

[304]  Yu-Ming Lin,et al.  Formation of Thick Porous Anodic Alumina Films and Nanowire Arrays on Silicon Wafers and Glass , 2003 .

[305]  Koichi Niihara,et al.  Formation of titanium oxide nanotube , 1998 .

[306]  Yi Jia,et al.  Hybrid heterojunction and photoelectrochemistry solar cell based on silicon nanowires and double-walled carbon nanotubes. , 2009, Nano letters.

[307]  Byeong Kwon Ju,et al.  Enhanced H2S sensing characteristics of SnO2 nanowires functionalized with CuO , 2009 .

[308]  Jimmy Xu,et al.  Highly ordered carbon nanotube arrays and IR detection , 2001 .

[309]  N. Koratkar,et al.  Electrical breakdown gas detector featuring carbon nanotube array electrodes. , 2008, Journal of nanoscience and nanotechnology.

[310]  Liangbing Hu,et al.  Carbon nanotube thin films: fabrication, properties, and applications. , 2010, Chemical reviews.

[311]  K. Hata,et al.  A stretchable carbon nanotube strain sensor for human-motion detection. , 2011, Nature nanotechnology.

[312]  A. Waag,et al.  Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers , 2009, Nanotechnology.

[313]  Pulickel M. Ajayan,et al.  Carbon nanotube-based synthetic gecko tapes , 2007, Proceedings of the National Academy of Sciences.

[314]  Deren Yang,et al.  Large-Scale Synthesis of SnO2 Nanotube Arrays as High-Performance Anode Materials of Li-Ion Batteries , 2011 .

[315]  Xinyong Li,et al.  Electrochemically assisted photocatalytic degradation of 4-chlorophenol by ZnFe2O4-modified TiO2 nanotube array electrode under visible light irradiation. , 2010, Environmental science & technology.

[316]  Shoushan Fan,et al.  Nanotechnology: Spinning continuous carbon nanotube yarns , 2002, Nature.

[317]  D. English,et al.  Toward efficient photomodulation of conjugated polymer emission: optimizing differential energy transfer in azobenzene-substituted PPV derivatives. , 2006, The journal of physical chemistry. B.

[318]  Xie Quan,et al.  Preparation of titania nanotubes and their environmental applications as electrode. , 2005, Environmental science & technology.

[319]  K. Hata,et al.  Integration of SWNT film into MEMS for a micro-thermoelectric device , 2010 .

[320]  C. Chang-Hasnain,et al.  Atomically sharp catalyst-free wurtzite GaAs /AlGaAs nanoneedles grown on silicon , 2008 .

[321]  Takafumi Yao,et al.  Plasma assisted molecular beam epitaxy of ZnO on c -plane sapphire: Growth and characterization , 1998 .

[322]  P. Ajayan,et al.  Flexible carbon nanotube--Cu2O hybrid electrodes for li-ion batteries. , 2011, Small.

[323]  Matteo Ferroni,et al.  Metal oxide nanowires: Preparation and application in gas sensing , 2009 .

[324]  Magnus Willander,et al.  Functionalised ZnO-nanorod-based selective electrochemical sensor for intracellular glucose. , 2010, Biosensors & bioelectronics.

[325]  Yun Jeong Hwang,et al.  High density n-Si/n-TiO2 core/shell nanowire arrays with enhanced photoactivity. , 2009, Nano letters.

[326]  D. Kim,et al.  High-Brightness Light Emitting Diodes Using Dislocation-Free Indium Gallium Nitride/Gallium Nitride Multiquantum-Well Nanorod Arrays , 2004 .

[327]  F. Falk,et al.  Silicon nanowire-based solar cells , 2008, Nanotechnology.

[328]  Zu Rong Dai,et al.  Novel Nanostructures of Functional Oxides Synthesized by Thermal Evaporation , 2003 .

[329]  R. Nesper,et al.  Morphology and Topochemical Reactions of Novel Vanadium Oxide Nanotubes , 1999 .

[330]  M. Meyyappan,et al.  Carbon Nanotube Nanoelectrode Array for Ultrasensitive DNA Detection , 2003 .

[331]  Haidong Yu,et al.  A general low-temperature route for large-scale fabrication of highly oriented ZnO nanorod/nanotube arrays. , 2005, Journal of the American Chemical Society.

[332]  I. Alber,et al.  Highly-ordered supportless three-dimensional nanowire networks with tunable complexity and interwire connectivity for device integration. , 2011, Nano letters.

[333]  H. Hahn,et al.  Influence of stabilizers in ZnO nanodispersions on field-effect transistor device performance , 2009 .

[334]  T. Guo,et al.  Stable field emission from cone-shaped SnO2 nanorod arrays , 2008 .

[335]  Man Siu Tse,et al.  Semiconductor gas sensor based on Pd-doped SnO2 nanorod thin films , 2008 .

[336]  Young Joon Hong,et al.  Shape‐Controlled Nanoarchitectures Using Nanowalls , 2009 .

[337]  Alexander Kvit,et al.  Chemical vapor deposition of aluminum nanowires on metal substrates for electrical energy storage applications. , 2012, ACS nano.

[338]  J. Macák,et al.  Smooth anodic TiO2 nanotubes: annealing and structure , 2006 .

[339]  Satoshi Yasuda,et al.  A black body absorber from vertically aligned single-walled carbon nanotubes , 2009, Proceedings of the National Academy of Sciences.

[340]  Craig A Grimes,et al.  Use of highly-ordered TiO(2) nanotube arrays in dye-sensitized solar cells. , 2006, Nano letters.

[341]  Hamidreza Ghandehari,et al.  Template synthesis of multifunctional nanotubes for controlled release. , 2006, Journal of controlled release : official journal of the Controlled Release Society.

[342]  Anastasios John Hart,et al.  Rapid growth and flow-mediated nucleation of millimeter-scale aligned carbon nanotube structures from a thin-film catalyst. , 2006, The journal of physical chemistry. B.

[343]  Charles M. Lieber,et al.  Electrical recording from hearts with flexible nanowire device arrays. , 2009, Nano letters.

[344]  Scott A. Miller,et al.  Electroosmotic flow in template-prepared carbon nanotube membranes. , 2001, Journal of the American Chemical Society.

[345]  Li Shi,et al.  Thermal and Structural Characterizations of Individual Single‐, Double‐, and Multi‐Walled Carbon Nanotubes , 2009 .

[346]  Craig A. Grimes,et al.  Synthesis and application of highly ordered arrays of TiO2 nanotubes , 2007 .

[347]  K. Hata,et al.  Water-Assisted Highly Efficient Synthesis of Impurity-Free Single-Walled Carbon Nanotubes , 2004, Science.

[348]  Jan M. Macak,et al.  Titanium oxide nanotubes prepared in phosphate electrolytes , 2005 .

[349]  J. Macák,et al.  Lithium‐ion insertion in anodic TiO2 nanotubes resulting in high electrochromic contrast , 2007 .

[350]  R. Li,et al.  Nanowire-based three-dimensional hierarchical core/shell heterostructured electrodes for high performance proton exchange membrane fuel cells , 2008 .

[351]  Y. Su,et al.  Photosensitivity of Field-Effect Transistors Based on ZnO Nanowire Networks , 2011, IEEE Electron Device Letters.

[352]  B. Xiang,et al.  Synthesis of TiO 2 /SiO 2 Core/Shell Nanocable Arrays , 2004 .

[353]  S. Collins,et al.  Acylating Capacity of the Phosphotungstic Wells−Dawson Heteropoly Acid: Intermediate Reactive Species , 2011 .

[354]  Andrei Ghicov,et al.  Self-organized, free-standing TiO2 nanotube membrane for flow-through photocatalytic applications. , 2007, Nano letters.

[355]  A. Gurlo,et al.  Molecular based, chimie douce approach to 0D and 1D indium oxide nanostructures. Evaluation of their sensing properties towards CO and H2 , 2010 .

[356]  A. Motta,et al.  HIERARCHICAL CARBON NANOTUBE-INORGANIC HYBRID STRUCTURES INVOLVING CNT ARRAYS AND CNT FIBERS , 2011 .

[357]  Yuehe Lin,et al.  Glucose Biosensors Based on Carbon Nanotube Nanoelectrode Ensembles , 2004 .

[358]  U. Gösele,et al.  Growth, thermodynamics, and electrical properties of silicon nanowires. , 2010, Chemical reviews.

[359]  Tianchun Ye,et al.  Electrode-contact enhancement in silicon nanowire-array-textured solar cells , 2011 .

[360]  Vesselin Shanov,et al.  A multi-wall carbon nanotube tower electrochemical actuator. , 2006, Nano letters.

[361]  O Yilmazoglu,et al.  Vertically aligned multiwalled carbon nanotubes for pressure, tactile and vibration sensing. , 2012, Nanotechnology.

[362]  C. L. Cheung,et al.  Fabrication of nanopillars by nanosphere lithography , 2006 .

[363]  Young Joon Hong,et al.  Controlled epitaxial growth modes of ZnO nanostructures using different substrate crystal planes , 2009 .

[364]  M. Meyyappan,et al.  Direct integration of metal oxide nanowire in vertical field-effect transistor , 2004 .

[365]  P. Ajayan,et al.  Ultralong aligned multi-walled carbon nanotube for electrochemical sensing. , 2008, Journal of nanoscience and nanotechnology.

[366]  Zhong Lin Wang,et al.  Ultrasensitive and highly selective gas sensors using three-dimensional tungsten oxide nanowire networks , 2006 .

[367]  Jun Wang,et al.  Anodic Formation of Ordered TiO2 Nanotube Arrays: Effects of Electrolyte Temperature and Anodization Potential , 2009 .

[368]  S. Senz,et al.  Epitaxial growth of silicon nanowires using an aluminium catalyst , 2006, Nature nanotechnology.

[369]  K. Dick,et al.  Gold-free growth of GaAs nanowires on silicon: arrays and polytypism , 2010, Nanotechnology.

[370]  High output power density from GaN-based two-dimensional nanorod light-emitting diode arrays , 2009 .

[371]  Craig A. Grimes,et al.  Hydrogen sensing using titania nanotubes , 2003 .

[372]  Andrei Ghicov,et al.  TiO2-Nb2O5 nanotubes with electrochemically tunable morphologies. , 2006, Angewandte Chemie.

[373]  Xinyu Song,et al.  Single-crystalline CuO nanobelts fabricated by a convenient route. , 2005, Journal of colloid and interface science.

[374]  Gengfeng Zheng,et al.  Multiplexed electrical detection of cancer markers with nanowire sensor arrays , 2005, Nature Biotechnology.

[375]  Xinsheng Peng,et al.  Fabrication and photoluminescence of ordered GaN nanowire arrays , 2001 .

[376]  Luis M Liz-Marzán,et al.  Gemini-surfactant-directed self-assembly of monodisperse gold nanorods into standing superlattices. , 2009, Angewandte Chemie.

[377]  Nathan S. Lewis,et al.  Flexible Polymer‐Embedded Si Wire Arrays , 2009 .

[378]  K. R. Atkinson,et al.  Strong, Transparent, Multifunctional, Carbon Nanotube Sheets , 2005, Science.

[379]  J. Redwing,et al.  Tin-Catalyzed Plasma-Assisted Growth of Silicon Nanowires , 2011 .

[380]  Sangwoo Lim,et al.  Synthesis of a ZnS Shell on the ZnO Nanowire and Its Effect on the Nanowire-Based Dye-Sensitized Solar Cells , 2010 .

[381]  G. Sberveglieri,et al.  Indium oxide quasi-monodimensional low temperature gas sensor , 2006 .

[382]  Kui‐Qing Peng,et al.  Preparation of Large-Area Uniform Silicon Nanowires Arrays through Metal-Assisted Chemical Etching , 2008 .

[383]  Vesa-Pekka Lehto,et al.  Carbon doping of self-organized TiO2 nanotube layers by thermal acetylene treatment , 2007 .

[384]  Ik Su Chun,et al.  Planar GaAs nanowires on GaAs (100) substrates: self-aligned, nearly twin-defect free, and transfer-printable. , 2008, Nano letters.

[385]  A. Majumdar,et al.  Nanowires for enhanced boiling heat transfer. , 2009, Nano letters.

[386]  Gerhard Abstreiter,et al.  Ga-assisted catalyst-free growth mechanism of GaAs nanowires by molecular beam epitaxy , 2008 .

[387]  H. Zeng,et al.  Room-temperature ferromagnetic nanotubes controlled by electron or hole doping , 2004, Nature.

[388]  E. Aydil,et al.  Synthesis and characterization of ZnO nanowires and their integration into dye-sensitized solar cells , 2006 .

[389]  V. Maheshwari,et al.  Tactile devices to sense touch on a par with a human finger. , 2008, Angewandte Chemie.

[390]  Bingqing Wei,et al.  Miniaturized gas ionization sensors using carbon nanotubes , 2003, Nature.

[391]  P. A. Smith,et al.  Electric-field assisted assembly and alignment of metallic nanowires , 2000 .

[392]  In-Sung Hwang,et al.  CuO nanowire gas sensors for air quality control in automotive cabin , 2008 .

[393]  Peidong Yang,et al.  Nanowire dye-sensitized solar cells , 2005, Nature materials.

[394]  Hyoungsub Kim,et al.  Hybrid ZnO nanowire networked field-effect transistor with solution-processed InGaZnO film , 2011 .

[395]  T. Tanaka,et al.  III–V Nanowires on Si Substrate: Selective-Area Growth and Device Applications , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[396]  A. Gawlik,et al.  Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters. , 2009, Nano letters.

[397]  Zhiyong Fan,et al.  Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates. , 2009, Nature materials.

[398]  R. Compton,et al.  Chemical Reaction of Reagents Covalently Confined to a Nanotube Surface: Nanotube-Mediated Redox Chemistry , 2008 .

[399]  C. Klinke,et al.  Carbon nanotube films as electron field emitters , 2002 .

[400]  V. Grillo,et al.  Self-catalyzed growth of GaAs nanowires on cleaved Si by molecular beam epitaxy , 2008, Nanotechnology.

[401]  J. Cha,et al.  Facile thermal treatment process for assembling vertically aligned semiconductor nanorods in solution. , 2012, Nanoscale.

[402]  Peidong Yang,et al.  ZnO-TiO2 Core-Shell Nanorod/P3HT Solar Cells , 2007 .

[403]  S. Fan,et al.  Si nanowires synthesized with Cu catalyst , 2007 .

[404]  Wei Lu,et al.  Doping-dependent electrical characteristics of SnO2 nanowires. , 2008, Small.

[405]  H. B. Halsall,et al.  High sensitivity carbon nanotube tower electrodes , 2006 .

[406]  P. Ajayan,et al.  Double-Walled Carbon Nanotube Electrodes for Electrochemical Sensing , 2007 .

[407]  Michael Wraback,et al.  Ultraviolet detectors based on epitaxial ZnO films grown by MOCVD , 2000 .

[408]  Ningsheng Xu,et al.  Fabrication of vertically aligned Si nanowires and their application in a gated field emission device , 2006 .