Optimizing bulk segregant analysis of drug resistance using Plasmodium falciparum genetic crosses conducted in humanized mice

[1]  T. Horii,et al.  Evidence of Artemisinin-Resistant Malaria in Africa. , 2021, The New England journal of medicine.

[2]  D. Fidock,et al.  Plasmodium falciparum K13 mutations in Africa and Asia impact artemisinin resistance and parasite fitness , 2021, eLife.

[3]  Ian H. Cheeseman,et al.  Single-cell genome sequencing of protozoan parasites. , 2021, Trends in parasitology.

[4]  A. Vaughan,et al.  The power and promise of genetic mapping from Plasmodium falciparum crosses utilizing human liver-chimeric mice , 2021, Communications biology.

[5]  Kristian E. Swearingen,et al.  Plasmodium falciparum Calcium-Dependent Protein Kinase 4 is Critical for Male Gametogenesis and Transmission to the Mosquito Vector , 2021, bioRxiv.

[6]  A. Vaughan,et al.  Bulk Segregant Approaches to Nutritional Genomics in Plasmodium falciparum , 2020 .

[7]  A. Vaughan,et al.  Humanized Mice and the Rebirth of Malaria Genetic Crosses. , 2020, Trends in parasitology.

[8]  E. Winzeler,et al.  A novel antiparasitic compound kills ring-stage Plasmodium falciparum and retains activity against artemisinin-resistant parasites. , 2020, The Journal of infectious diseases.

[9]  F. Nosten,et al.  The extended recovery ring-stage survival assay provides a superior association with patient clearance half-life and increases throughput , 2020, Malaria Journal.

[10]  B. Bergmann,et al.  A Kelch13-defined endocytosis pathway mediates artemisinin resistance in malaria parasites , 2020, Science.

[11]  K. Lange,et al.  Pooled analysis of radiation hybrids identifies loci for growth and drug action in mammalian cells , 2019, bioRxiv.

[12]  A. Vaughan,et al.  Genetic mapping of fitness determinants across the malaria parasite Plasmodium falciparum life cycle , 2019, bioRxiv.

[13]  D. Hartl,et al.  Mutations in Plasmodium falciparum actin-binding protein coronin confer reduced artemisinin susceptibility , 2018, Proceedings of the National Academy of Sciences.

[14]  R. Tyagi,et al.  High-level artemisinin-resistance with quinine co-resistance emerges in P. falciparum malaria under in vivo artesunate pressure , 2018, BMC Medicine.

[15]  L. Kruglyak,et al.  Fast genetic mapping of complex traits in C. elegans using millions of individuals in bulk , 2018, Nature Communications.

[16]  R. Grumet,et al.  QTLseqr: An R package for bulk segregant analysis with next-generation sequencing , 2017, bioRxiv.

[17]  Jim Stalker,et al.  Origins of the current outbreak of multidrug-resistant malaria in southeast Asia: a retrospective genetic study , 2017, bioRxiv.

[18]  Christopher J. Tonkin,et al.  The Molecular Basis of Erythrocyte Invasion by Malaria Parasites. , 2017, Cell host & microbe.

[19]  Christopher J. R. Illingworth,et al.  Rapid identification of genes controlling virulence and immunity in malaria parasites , 2017, PLoS pathogens.

[20]  S. Schaffner,et al.  Artemisinin resistance without pfkelch13 mutations in Plasmodium falciparum isolates from Cambodia , 2017, Malaria Journal.

[21]  François Nosten,et al.  Longitudinal genomic surveillance of Plasmodium falciparum malaria parasites reveals complex genomic architecture of emerging artemisinin resistance , 2017, Genome Biology.

[22]  X. Su,et al.  Genome-wide association analysis identifies genetic loci associated with resistance to multiple antimalarials in Plasmodium falciparum from China-Myanmar border , 2016, Scientific Reports.

[23]  Gil McVean,et al.  Indels, structural variation, and recombination drive genomic diversity in Plasmodium falciparum , 2016, Genome research.

[24]  Leann Tilley,et al.  Artemisinin Action and Resistance in Plasmodium falciparum. , 2016, Trends in parasitology.

[25]  Nicholas P. J. Day,et al.  Genomic epidemiology of artemisinin resistant malaria. , 2016, eLife.

[26]  E. Hodel,et al.  Incorporating Stage-Specific Drug Action into Pharmacological Modeling of Antimalarial Drug Treatment , 2016, Antimicrobial Agents and Chemotherapy.

[27]  A. Vaughan,et al.  Plasmodium falciparum genetic crosses in a humanized mouse model , 2015, Nature Methods.

[28]  Darren J Obbard,et al.  Hybridization and pre-zygotic reproductive barriers in Plasmodium , 2015, Proceedings of the Royal Society B: Biological Sciences.

[29]  Gilean McVean,et al.  Genetic architecture of artemisinin-resistant Plasmodium falciparum , 2015, Nature Genetics.

[30]  Frédéric D. Chevalier,et al.  Efficient linkage mapping using exome capture and extreme QTL in schistosome parasites , 2014, BMC Genomics.

[31]  Samuel A. Assefa,et al.  A barcode of organellar genome polymorphisms identifies the geographic origin of Plasmodium falciparum strains , 2014, Nature Communications.

[32]  J. Cañizares,et al.  ABCC transporters mediate insect resistance to multiple Bt toxins revealed by bulk segregant analysis , 2014, BMC Biology.

[33]  J. Cañizares,et al.  ABCC transporters mediate insect resistance to multiple Bt toxins revealed by bulk segregant analysis , 2014, BMC Biology.

[34]  D. Serre,et al.  Single-cell genomics for dissection of complex malaria infections , 2014, Genome research.

[35]  Saorin Kim,et al.  Novel phenotypic assays for the detection of artemisinin-resistant Plasmodium falciparum malaria in Cambodia: in-vitro and ex-vivo drug-response studies. , 2013, The Lancet. Infectious diseases.

[36]  M. Sinka,et al.  Global Distribution of the Dominant Vector Species of Malaria , 2013 .

[37]  R. Sauerwein,et al.  The Human Malaria Parasite Pfs47 Gene Mediates Evasion of the Mosquito Immune System , 2013, Science.

[38]  L. Tilley,et al.  Altered temporal response of malaria parasites determines differential sensitivity to artemisinin , 2013, Proceedings of the National Academy of Sciences.

[39]  Danny W. Wilson,et al.  Defining the Timing of Action of Antimalarial Drugs against Plasmodium falciparum , 2013, Antimicrobial Agents and Chemotherapy.

[40]  Saorin Kim,et al.  Reduced Artemisinin Susceptibility of Plasmodium falciparum Ring Stages in Western Cambodia , 2012, Antimicrobial Agents and Chemotherapy.

[41]  X. Su,et al.  Mechanisms of in vitro resistance to dihydroartemisinin in Plasmodium falciparum , 2012, Molecular microbiology.

[42]  Caroline W. Kabaria,et al.  A global map of dominant malaria vectors , 2012, Parasites & Vectors.

[43]  T. Cezard,et al.  Quantitative genome re-sequencing defines multiple mutations conferring chloroquine resistance in rodent malaria , 2012, BMC Genomics.

[44]  T. Cezard,et al.  Quantitative genome re-sequencing defines multiple mutations conferring chloroquine resistance in rodent malaria , 2012, BMC Genomics.

[45]  Paul M. Magwene,et al.  The Statistics of Bulk Segregant Analysis Using Next Generation Sequencing , 2011, PLoS Comput. Biol..

[46]  Hengde Li A quick method to calculate QTL confidence interval , 2011, Journal of Genetics.

[47]  A. Martinelli,et al.  Genomewide Scan Reveals Amplification of mdr1 as a Common Denominator of Resistance to Mefloquine, Lumefantrine, and Artemisinin in Plasmodium chabaudi Malaria Parasites , 2011, Antimicrobial Agents and Chemotherapy.

[48]  M. Quail,et al.  Genetic Mapping Identifies Novel Highly Protective Antigens for an Apicomplexan Parasite , 2011, PLoS pathogens.

[49]  M. Blaxter,et al.  Experimental evolution, genetic analysis and genome re-sequencing reveal the mutation conferring artemisinin resistance in an isogenic lineage of malaria parasites , 2010, BMC Genomics.

[50]  Leonid Kruglyak,et al.  Dissection of genetically complex traits with extremely large pools of yeast segregants , 2010, Nature.

[51]  R. Carter,et al.  Linkage Group Selection--a fast approach to the genetic analysis of malaria parasites. , 2007, International journal for parasitology.

[52]  Yoshikazu Ohya,et al.  Genetic Complexity and Quantitative Trait Loci Mapping of Yeast Morphological Traits , 2007, PLoS genetics.

[53]  R. Carter,et al.  A genetic approach to the de novo identification of targets of strain-specific immunity in malaria parasites. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[54]  J. Wootton,et al.  Mutations in the P. falciparum digestive vacuole transmembrane protein PfCRT and evidence for their role in chloroquine resistance. , 2000, Molecular cell.

[55]  J C Wootton,et al.  A genetic map and recombination parameters of the human malaria parasite Plasmodium falciparum. , 1999, Science.

[56]  D. Kwiatkowski,et al.  An analysis of the temperature effects of fever on the intra-host population dynamics of Plasmodium falciparum , 1998, Parasitology.

[57]  S. Hoffman,et al.  Phase I/IIa safety, immunogenicity, and efficacy trial of NYVAC-Pf7, a pox-vectored, multiantigen, multistage vaccine candidate for Plasmodium falciparum malaria. , 1998, The Journal of infectious diseases.

[58]  R. Michelmore,et al.  Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[59]  Thomas E. Wellems,et al.  Chloroquine resistance not linked to mdr-like genes in a Plasmodium falciparum cross , 1990, Nature.

[60]  J. Jensen,et al.  Nutritional requirements of Plasmodium falciparum in culture. III. Further observations on essential nutrients and antimetabolites. , 1985, The Journal of protozoology.

[61]  D. Fidock,et al.  How can we identify parasite genes that underlie antimalarial drug resistance? , 2011, Pharmacogenomics.

[62]  J. P. Park The Identification Of Multiple Outliers , 2000 .

[63]  B. Delemarre,et al.  [Tropical malaria contracted the natural way in the Netherlands]. , 1979, Nederlands tijdschrift voor geneeskunde.

[64]  E. Nadaraya On Estimating Regression , 1964 .