Optimizing bulk segregant analysis of drug resistance using Plasmodium falciparum genetic crosses conducted in humanized mice
暂无分享,去创建一个
A. Vaughan | S. Kappe | M. Ferdig | Standwell C. Nkhoma | R. Tripura | T. Peto | M. Dhorda | F. Nosten | L. Checkley | Ann N. Reyes | D. Shoue | Ian H. Cheeseman | Sudhir Kumar | Douglas A Shoue | Xue Li | Meseret T. Haile | Dysoley Lek | Elizabeth Delgado | Biley A. Abatiyow | Lisa A. Checkley | K. V. Brenneman | Katrina A. Button-Simons | Tim J. C. Anderson | D. Lek | Douglas A. Shoue
[1] T. Horii,et al. Evidence of Artemisinin-Resistant Malaria in Africa. , 2021, The New England journal of medicine.
[2] D. Fidock,et al. Plasmodium falciparum K13 mutations in Africa and Asia impact artemisinin resistance and parasite fitness , 2021, eLife.
[3] Ian H. Cheeseman,et al. Single-cell genome sequencing of protozoan parasites. , 2021, Trends in parasitology.
[4] A. Vaughan,et al. The power and promise of genetic mapping from Plasmodium falciparum crosses utilizing human liver-chimeric mice , 2021, Communications biology.
[5] Kristian E. Swearingen,et al. Plasmodium falciparum Calcium-Dependent Protein Kinase 4 is Critical for Male Gametogenesis and Transmission to the Mosquito Vector , 2021, bioRxiv.
[6] A. Vaughan,et al. Bulk Segregant Approaches to Nutritional Genomics in Plasmodium falciparum , 2020 .
[7] A. Vaughan,et al. Humanized Mice and the Rebirth of Malaria Genetic Crosses. , 2020, Trends in parasitology.
[8] E. Winzeler,et al. A novel antiparasitic compound kills ring-stage Plasmodium falciparum and retains activity against artemisinin-resistant parasites. , 2020, The Journal of infectious diseases.
[9] F. Nosten,et al. The extended recovery ring-stage survival assay provides a superior association with patient clearance half-life and increases throughput , 2020, Malaria Journal.
[10] B. Bergmann,et al. A Kelch13-defined endocytosis pathway mediates artemisinin resistance in malaria parasites , 2020, Science.
[11] K. Lange,et al. Pooled analysis of radiation hybrids identifies loci for growth and drug action in mammalian cells , 2019, bioRxiv.
[12] A. Vaughan,et al. Genetic mapping of fitness determinants across the malaria parasite Plasmodium falciparum life cycle , 2019, bioRxiv.
[13] D. Hartl,et al. Mutations in Plasmodium falciparum actin-binding protein coronin confer reduced artemisinin susceptibility , 2018, Proceedings of the National Academy of Sciences.
[14] R. Tyagi,et al. High-level artemisinin-resistance with quinine co-resistance emerges in P. falciparum malaria under in vivo artesunate pressure , 2018, BMC Medicine.
[15] L. Kruglyak,et al. Fast genetic mapping of complex traits in C. elegans using millions of individuals in bulk , 2018, Nature Communications.
[16] R. Grumet,et al. QTLseqr: An R package for bulk segregant analysis with next-generation sequencing , 2017, bioRxiv.
[17] Jim Stalker,et al. Origins of the current outbreak of multidrug-resistant malaria in southeast Asia: a retrospective genetic study , 2017, bioRxiv.
[18] Christopher J. Tonkin,et al. The Molecular Basis of Erythrocyte Invasion by Malaria Parasites. , 2017, Cell host & microbe.
[19] Christopher J. R. Illingworth,et al. Rapid identification of genes controlling virulence and immunity in malaria parasites , 2017, PLoS pathogens.
[20] S. Schaffner,et al. Artemisinin resistance without pfkelch13 mutations in Plasmodium falciparum isolates from Cambodia , 2017, Malaria Journal.
[21] François Nosten,et al. Longitudinal genomic surveillance of Plasmodium falciparum malaria parasites reveals complex genomic architecture of emerging artemisinin resistance , 2017, Genome Biology.
[22] X. Su,et al. Genome-wide association analysis identifies genetic loci associated with resistance to multiple antimalarials in Plasmodium falciparum from China-Myanmar border , 2016, Scientific Reports.
[23] Gil McVean,et al. Indels, structural variation, and recombination drive genomic diversity in Plasmodium falciparum , 2016, Genome research.
[24] Leann Tilley,et al. Artemisinin Action and Resistance in Plasmodium falciparum. , 2016, Trends in parasitology.
[25] Nicholas P. J. Day,et al. Genomic epidemiology of artemisinin resistant malaria. , 2016, eLife.
[26] E. Hodel,et al. Incorporating Stage-Specific Drug Action into Pharmacological Modeling of Antimalarial Drug Treatment , 2016, Antimicrobial Agents and Chemotherapy.
[27] A. Vaughan,et al. Plasmodium falciparum genetic crosses in a humanized mouse model , 2015, Nature Methods.
[28] Darren J Obbard,et al. Hybridization and pre-zygotic reproductive barriers in Plasmodium , 2015, Proceedings of the Royal Society B: Biological Sciences.
[29] Gilean McVean,et al. Genetic architecture of artemisinin-resistant Plasmodium falciparum , 2015, Nature Genetics.
[30] Frédéric D. Chevalier,et al. Efficient linkage mapping using exome capture and extreme QTL in schistosome parasites , 2014, BMC Genomics.
[31] Samuel A. Assefa,et al. A barcode of organellar genome polymorphisms identifies the geographic origin of Plasmodium falciparum strains , 2014, Nature Communications.
[32] J. Cañizares,et al. ABCC transporters mediate insect resistance to multiple Bt toxins revealed by bulk segregant analysis , 2014, BMC Biology.
[33] J. Cañizares,et al. ABCC transporters mediate insect resistance to multiple Bt toxins revealed by bulk segregant analysis , 2014, BMC Biology.
[34] D. Serre,et al. Single-cell genomics for dissection of complex malaria infections , 2014, Genome research.
[35] Saorin Kim,et al. Novel phenotypic assays for the detection of artemisinin-resistant Plasmodium falciparum malaria in Cambodia: in-vitro and ex-vivo drug-response studies. , 2013, The Lancet. Infectious diseases.
[36] M. Sinka,et al. Global Distribution of the Dominant Vector Species of Malaria , 2013 .
[37] R. Sauerwein,et al. The Human Malaria Parasite Pfs47 Gene Mediates Evasion of the Mosquito Immune System , 2013, Science.
[38] L. Tilley,et al. Altered temporal response of malaria parasites determines differential sensitivity to artemisinin , 2013, Proceedings of the National Academy of Sciences.
[39] Danny W. Wilson,et al. Defining the Timing of Action of Antimalarial Drugs against Plasmodium falciparum , 2013, Antimicrobial Agents and Chemotherapy.
[40] Saorin Kim,et al. Reduced Artemisinin Susceptibility of Plasmodium falciparum Ring Stages in Western Cambodia , 2012, Antimicrobial Agents and Chemotherapy.
[41] X. Su,et al. Mechanisms of in vitro resistance to dihydroartemisinin in Plasmodium falciparum , 2012, Molecular microbiology.
[42] Caroline W. Kabaria,et al. A global map of dominant malaria vectors , 2012, Parasites & Vectors.
[43] T. Cezard,et al. Quantitative genome re-sequencing defines multiple mutations conferring chloroquine resistance in rodent malaria , 2012, BMC Genomics.
[44] T. Cezard,et al. Quantitative genome re-sequencing defines multiple mutations conferring chloroquine resistance in rodent malaria , 2012, BMC Genomics.
[45] Paul M. Magwene,et al. The Statistics of Bulk Segregant Analysis Using Next Generation Sequencing , 2011, PLoS Comput. Biol..
[46] Hengde Li. A quick method to calculate QTL confidence interval , 2011, Journal of Genetics.
[47] A. Martinelli,et al. Genomewide Scan Reveals Amplification of mdr1 as a Common Denominator of Resistance to Mefloquine, Lumefantrine, and Artemisinin in Plasmodium chabaudi Malaria Parasites , 2011, Antimicrobial Agents and Chemotherapy.
[48] M. Quail,et al. Genetic Mapping Identifies Novel Highly Protective Antigens for an Apicomplexan Parasite , 2011, PLoS pathogens.
[49] M. Blaxter,et al. Experimental evolution, genetic analysis and genome re-sequencing reveal the mutation conferring artemisinin resistance in an isogenic lineage of malaria parasites , 2010, BMC Genomics.
[50] Leonid Kruglyak,et al. Dissection of genetically complex traits with extremely large pools of yeast segregants , 2010, Nature.
[51] R. Carter,et al. Linkage Group Selection--a fast approach to the genetic analysis of malaria parasites. , 2007, International journal for parasitology.
[52] Yoshikazu Ohya,et al. Genetic Complexity and Quantitative Trait Loci Mapping of Yeast Morphological Traits , 2007, PLoS genetics.
[53] R. Carter,et al. A genetic approach to the de novo identification of targets of strain-specific immunity in malaria parasites. , 2005, Proceedings of the National Academy of Sciences of the United States of America.
[54] J. Wootton,et al. Mutations in the P. falciparum digestive vacuole transmembrane protein PfCRT and evidence for their role in chloroquine resistance. , 2000, Molecular cell.
[55] J C Wootton,et al. A genetic map and recombination parameters of the human malaria parasite Plasmodium falciparum. , 1999, Science.
[56] D. Kwiatkowski,et al. An analysis of the temperature effects of fever on the intra-host population dynamics of Plasmodium falciparum , 1998, Parasitology.
[57] S. Hoffman,et al. Phase I/IIa safety, immunogenicity, and efficacy trial of NYVAC-Pf7, a pox-vectored, multiantigen, multistage vaccine candidate for Plasmodium falciparum malaria. , 1998, The Journal of infectious diseases.
[58] R. Michelmore,et al. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. , 1991, Proceedings of the National Academy of Sciences of the United States of America.
[59] Thomas E. Wellems,et al. Chloroquine resistance not linked to mdr-like genes in a Plasmodium falciparum cross , 1990, Nature.
[60] J. Jensen,et al. Nutritional requirements of Plasmodium falciparum in culture. III. Further observations on essential nutrients and antimetabolites. , 1985, The Journal of protozoology.
[61] D. Fidock,et al. How can we identify parasite genes that underlie antimalarial drug resistance? , 2011, Pharmacogenomics.
[62] J. P. Park. The Identification Of Multiple Outliers , 2000 .
[63] B. Delemarre,et al. [Tropical malaria contracted the natural way in the Netherlands]. , 1979, Nederlands tijdschrift voor geneeskunde.
[64] E. Nadaraya. On Estimating Regression , 1964 .