Sharp Finite-Time Iterated-Logarithm Martingale Concentration

We give concentration bounds for martingales that are uniform over finite times and extend classical Hoeffding and Bernstein inequalities. We also demonstrate our concentration bounds to be optimal with a matching anti-concentration inequality, proved using the same method. Together these constitute a finite-time version of the law of the iterated logarithm, and shed light on the relationship between it and the central limit theorem.

[1]  A. Khintchine Über einen Satz der Wahrscheinlichkeitsrechnung , 1924 .

[2]  P. Hartman,et al.  On the Law of the Iterated Logarithm , 1941 .

[3]  P. Erdös,et al.  A limit theorem for the maximum of normalized sums of independent random variables , 1956 .

[4]  W. Hoeffding Probability Inequalities for sums of Bounded Random Variables , 1963 .

[5]  H. Robbins,et al.  Iterated logarithm inequalities. , 1967, Proceedings of the National Academy of Sciences of the United States of America.

[6]  H. Robbins,et al.  Boundary Crossing Probabilities for the Wiener Process and Sample Sums , 1970 .

[7]  W. Stout A martingale analogue of Kolmogorov's law of the iterated logarithm , 1970 .

[8]  H. Robbins Statistical Methods Related to the Law of the Iterated Logarithm , 1970 .

[9]  C. C. Heyde,et al.  MARTINGALES: A CASE FOR A PLACE IN THE STATISTICIAN'S REPERTOIRE1 , 1972 .

[10]  D. Freedman On Tail Probabilities for Martingales , 1975 .

[11]  R. Durrett Probability: Theory and Examples , 1993 .

[12]  L. Rogers Monte Carlo valuation of American options , 2002 .

[13]  Martin B. Haugh,et al.  Pricing American Options: A Duality Approach , 2001, Oper. Res..

[14]  T. Lai,et al.  Pseudo-maximization and self-normalized processes , 2007, 0709.2233.

[15]  Yuval Peres The unreasonable effectiveness of martingales , 2009, SODA.

[16]  W. Feller,et al.  The General Form of the So-Called Law of the Iterated Logarithm , 1943 .

[17]  Gábor Lugosi,et al.  Concentration Inequalities - A Nonasymptotic Theory of Independence , 2013, Concentration Inequalities.

[18]  Matthew Malloy,et al.  lil' UCB : An Optimal Exploration Algorithm for Multi-Armed Bandits , 2013, COLT.

[19]  P. Erdos,et al.  On the Law of the Iterated Logarithm , 1942 .