Altered microRNA expression in frontotemporal lobar degeneration with TDP-43 pathology caused by progranulin mutations

[1]  M. Pericak-Vance,et al.  Mutation screening of spastin, atlastin, and REEP1 in hereditary spastic paraplegia , 2011, Clinical genetics.

[2]  T. Südhof,et al.  The cell-adhesion G protein-coupled receptor BAI3 is a high-affinity receptor for C1q-like proteins , 2011, Proceedings of the National Academy of Sciences.

[3]  E. van Rooij,et al.  Therapeutic Advances in MicroRNA Targeting , 2011, Journal of cardiovascular pharmacology.

[4]  Allissa Dillman,et al.  Genome-wide screen identifies rs646776 near sortilin as a regulator of progranulin levels in human plasma. , 2010, American journal of human genetics.

[5]  A. Kertesz,et al.  Frontotemporal dementia: a review for primary care physicians. , 2010, American family physician.

[6]  H. Feldman,et al.  Sortilin-Mediated Endocytosis Determines Levels of the Frontotemporal Dementia Protein, Progranulin , 2010, Neuron.

[7]  Nick C Fox,et al.  Clinical, genetic and pathological heterogeneity of frontotemporal dementia: a review , 2010, Journal of Neurology, Neurosurgery & Psychiatry.

[8]  A. Chalk,et al.  RNAi Screen Indicates Widespread Biological Function for Human Natural Antisense Transcripts , 2010, PloS one.

[9]  B. de Strooper,et al.  Dysregulated microRNAs in neurodegenerative disorders. , 2010, Seminars in cell & developmental biology.

[10]  A. Seto The road toward microRNA therapeutics. , 2010, The international journal of biochemistry & cell biology.

[11]  Guiliang Tang,et al.  miR-107 regulates granulin/progranulin with implications for traumatic brain injury and neurodegenerative disease. , 2010, The American journal of pathology.

[12]  E. Masliah,et al.  A Pathologic Cascade Leading to Synaptic Dysfunction in α-Synuclein-Induced Neurodegeneration , 2010, The Journal of Neuroscience.

[13]  Nicholas T. Ingolia,et al.  Mammalian microRNAs predominantly act to decrease target mRNA levels , 2010, Nature.

[14]  C. Wahlestedt,et al.  Striatal microRNA controls cocaine intake through CREB signaling , 2010, Nature.

[15]  Robert V Farese,et al.  MicroRNA-29b Regulates the Expression Level of Human Progranulin, a Secreted Glycoprotein Implicated in Frontotemporal Dementia , 2010, PloS one.

[16]  H. Budka,et al.  Protein coding of neurodegenerative dementias: the neuropathological basis of biomarker diagnostics , 2010, Acta Neuropathologica.

[17]  John McAnally,et al.  MicroRNA-206 Delays ALS Progression and Promotes Regeneration of Neuromuscular Synapses in Mice , 2009, Science.

[18]  M. Hristov,et al.  Delivery of MicroRNA-126 by Apoptotic Bodies Induces CXCL12-Dependent Vascular Protection , 2009, Science Signaling.

[19]  S. Kauppinen,et al.  microRNAs in CNS Disorders , 2009, NeuroMolecular Medicine.

[20]  C. Jack,et al.  Prominent phenotypic variability associated with mutations in Progranulin , 2009, Neurobiology of Aging.

[21]  Claes Wahlestedt,et al.  MicroRNA-219 modulates NMDA receptor-mediated neurobehavioral dysfunction , 2009, Proceedings of the National Academy of Sciences.

[22]  D. Bartel MicroRNAs: Target Recognition and Regulatory Functions , 2009, Cell.

[23]  Yi Xing,et al.  The Bifunctional microRNA miR-9/miR-9* Regulates REST and CoREST and Is Downregulated in Huntington's Disease , 2008, The Journal of Neuroscience.

[24]  R. Petersen,et al.  Common variation in the miR-659 binding-site of GRN is a major risk factor for TDP43-positive frontotemporal dementia , 2008, Human molecular genetics.

[25]  J. Trojanowski,et al.  Variations in the progranulin gene affect global gene expression in frontotemporal lobar degeneration. , 2008, Human molecular genetics.

[26]  A. Delacourte,et al.  Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer's disease correlates with increased BACE1/β-secretase expression , 2008, Proceedings of the National Academy of Sciences.

[27]  D. Geschwind,et al.  Phenotypic variability associated with progranulin haploinsufficiency in patients with the common 1477C→T (Arg493X) mutation: an international initiative , 2007, The Lancet Neurology.

[28]  Howard Y. Chang,et al.  Functional Demarcation of Active and Silent Chromatin Domains in Human HOX Loci by Noncoding RNAs , 2007, Cell.

[29]  J. Schneider,et al.  Neuropathologic diagnostic and nosologic criteria for frontotemporal lobar degeneration: consensus of the Consortium for Frontotemporal Lobar Degeneration , 2007, Acta Neuropathologica.

[30]  William Stafford Noble,et al.  Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project , 2007, Nature.

[31]  G. Schellenberg,et al.  A novel progranulin mutation associated with variable clinical presentation and tau, TDP43 and alpha-synuclein pathology. , 2007, Brain : a journal of neurology.

[32]  Xiaoxia Qi,et al.  Control of Stress-Dependent Cardiac Growth and Gene Expression by a MicroRNA , 2007, Science.

[33]  I. Mackenzie The neuropathology and clinical phenotype of FTD with progranulin mutations , 2007, Acta Neuropathologica.

[34]  R. Petersen,et al.  Neuropathologic Features of Frontotemporal Lobar Degeneration With Ubiquitin-Positive Inclusions With Progranulin Gene (PGRN) Mutations , 2007, Journal of neuropathology and experimental neurology.

[35]  Bruce L. Miller,et al.  Ubiquitinated TDP-43 in Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis , 2006, Science.

[36]  J. Trojanowski,et al.  Pathological heterogeneity of frontotemporal lobar degeneration with ubiquitin-positive inclusions delineated by ubiquitin immunohistochemistry and novel monoclonal antibodies. , 2006, The American journal of pathology.

[37]  Julie S. Snowden,et al.  Heterogeneity of ubiquitin pathology in frontotemporal lobar degeneration: classification and relation to clinical phenotype , 2006, Acta Neuropathologica.

[38]  C. Duijn,et al.  Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21 , 2006, Nature.

[39]  S. Melquist,et al.  Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17 , 2006, Nature.

[40]  S. Batalov,et al.  Antisense Transcription in the Mammalian Transcriptome , 2005, Science.

[41]  S. Salzberg,et al.  The Transcriptional Landscape of the Mammalian Genome , 2005, Science.

[42]  S Miyano,et al.  Open source clustering software. , 2004, Bioinformatics.

[43]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[44]  J. Hardy,et al.  The genetic and pathological classification of familial frontotemporal dementia. , 2001, Archives of neurology.

[45]  B Miller,et al.  Clinical and pathological diagnosis of frontotemporal dementia: report of the Work Group on Frontotemporal Dementia and Pick's Disease. , 2001, Archives of neurology.

[46]  R. Tibshirani,et al.  Significance analysis of microarrays applied to the ionizing radiation response , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[47]  A Klug,et al.  Mutation in the tau gene in familial multiple system tauopathy with presenile dementia. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[48]  Ronald C. Petersen,et al.  Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17 , 1998, Nature.

[49]  G. Schellenberg,et al.  Tau is a candidate gene for chromosome 17 frontotemporal dementia , 1998, Annals of neurology.

[50]  M. Ross,et al.  Astrotactin (ASTN), a gene for glial-guided neuronal migration, maps to human chromosome 1q25.2. , 1997, Genomics.

[51]  D. Grzybicki Altered microRNA expression in frontotemporal lobar degeneration with TDP-43 pathology caused by progranulin mutations , 2012 .

[52]  D. Perani,et al.  A novel progranulin mutation causing frontotemporal lobar degeneration with heterogeneous phenotypic expression. , 2011, Journal of Alzheimer's disease : JAD.

[53]  Dmitri V Zaykin,et al.  Multiple tests for genetic effects in association studies. , 2002, Methods in molecular biology.