Fluidic interconnections for microfluidic systems: A new integrated fluidic interconnection allowing plug‘n’play functionality

Abstract A crucial challenge in packaging of microsystems is microfluidic interconnections. These have to seal the ports of the system, and have to provide the appropriate interface to other devices or the external environment. Integrated fluidic interconnections appear to be a good solution for interconnecting polymer microsystems in terms of cost, space and performance. Following this path we propose a new reversible, integrated fluidic interconnection composed of custom-made cylindrical rings integrated in a polymer house next to the fluidic network. This allows plug‘n’play functionality between external metal ferrules and the system. Theoretical calculations are made to dimension and model the integrated fluidic interconnection. Leakage tests are performed on the interconnections, in order to experimentally confirm the model, and detect its limits.

[1]  Z Hugh Fan,et al.  Macro-to-micro interfaces for microfluidic devices. , 2004, Lab on a chip.

[2]  S. Quake,et al.  Microfluidics in structural biology: smaller, faster ... better , 2003 .

[3]  H. Ishida,et al.  Fabrications of Micro-Channel Device by Hot Emboss and Direct Bonding of PMMA , 2004 .

[4]  Liwei Lin,et al.  Micro-to-macro fluidic interconnectors with an integrated polymer sealant , 2000 .

[5]  K. Jensen Microreaction engineering * is small better? , 2001 .

[6]  Robert M. Young,et al.  Fabrication of micronozzles using low-temperature wafer-level bonding with SU-8 , 2003 .

[7]  David T. Burke,et al.  Microfabricated devices for genetic diagnostics , 1998, Proc. IEEE.

[8]  Aniruddha Puntambekar,et al.  Self-aligning microfluidic interconnects for glass- and plastic-based microfluidic systems , 2002 .

[9]  Chang Liu,et al.  Re-configurable fluid circuits by PDMS elastomer micromachining , 1999, Technical Digest. IEEE International MEMS 99 Conference. Twelfth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.99CH36291).

[10]  S. D. Collins,et al.  Fluidic interconnects for modular assembly of chemical microsystems , 1998 .

[11]  H. Becker,et al.  Polymer microfluidic devices. , 2002, Talanta.

[12]  Jan Haisma,et al.  Direct bonding of organic polymeric materials , 1995 .

[13]  Oliver Geschke,et al.  Plug’n’pump fluidic interconnection , 2004 .

[14]  N. F. de Rooij,et al.  Microfluidics meets MEMS , 2003, Proc. IEEE.

[15]  Jan Lichtenberg,et al.  Sample pretreatment on microfabricated devices. , 2002, Talanta.

[16]  M. Kothare,et al.  Novel microfluidic interconnectors for high temperature and pressure applications , 2003 .

[17]  Robert B. Darling Development of a High Density, Planar, Modular Microfluidic Interconnect System , 2001 .

[18]  Weileun Fang,et al.  Micromachined rubber O-ring micro-fluidic couplers , 2000, Proceedings IEEE Thirteenth Annual International Conference on Micro Electro Mechanical Systems (Cat. No.00CH36308).

[19]  Ryutaro Maeda,et al.  A world‐to‐chip socket for microfluidic prototype development , 2002, Electrophoresis.

[20]  Paul C. Galambos,et al.  Precision Alignment Packaging for Microsystems With Multiple Fluid Connections , 2001, Micro-Electro-Mechanical Systems (MEMS).

[21]  Oliver Geschke,et al.  Polymer microstructures: are they applicable as optical components? , 2004, SPIE Optics East.

[22]  William J. Benett,et al.  Polymer-Based Packaging Platform for Hybrid Microfluidic Systems , 2002 .

[23]  J Wandrup,et al.  Blood gases and oximetry: calibration-free new dry-chemistry and optical technology for near-patient testing. , 2001, Clinica chimica acta; international journal of clinical chemistry.

[24]  Ernst Obermeier Transducers ’01 Eurosensors XV , 2001 .

[25]  K. R. Williams,et al.  Novel interconnection technologies for integrated microfluidic systems , 1998 .

[26]  S. D. Collins,et al.  Removable tubing interconnects for glass-based micro-fluidic systems made using ECDM , 2004 .