RETINAL MECHANISMS FOR CHROMATIC AND ACHROMATIC VISION

Certain results of our recent studies on what we call the graded photopic response (g.p.r.) of the retina have been presented elsewhere.' However, that presentation was limited to a description of the electrophysiological experiments and their results. Our purpose here is to discuss these results in relation to other similar studies2-ls and to attempt to fit them into the framework of present knowledge of experimental human and animal psychology. This paper first describes the general characteristics of the g.p.r., and then discusses a number of observations in neurophysiological terms. Experimental animal psychology studies on the performance of the visual system of

[1]  D. Jameson,et al.  Some Quantitative Aspects of an Opponent-Colors Theory. I. Chromatic Responses and Spectral Saturation , 1955 .

[2]  W. Crozier,et al.  ON THE VISIBILITY OF RADIATION AT THE HUMAN FOVEA , 1950, The Journal of general physiology.

[3]  G. Svaetichin,et al.  Spectral response curves from single cones. , 1956, Acta physiologica Scandinavica. Supplementum.

[4]  G. Müller Darstellung und Erklärung der verschiedenen Typen der Farbenblindheit : nebst Erörterung der Funktion des Stäbchenapparates sowie des Farbensinns der Bienen und der Fische , 1924 .

[5]  F. Ratliff,et al.  The role of physiological nystagmus in monocular acuity. , 1952, Journal of experimental psychology.

[6]  T. Tomita A study on the origin of intraretinal action potential of the cyprinid fish by means of pencil-type microelectrode. , 1957, The Japanese journal of physiology.

[7]  E. Q. Adams X-Z Planes in the 1931 I.C.I. System of Colorimetry1 , 1942 .

[8]  G. Svaetichin,et al.  Electric responses from the isolated retinas of fishes. , 1958, American journal of ophthalmology.

[9]  E. Denton,et al.  Visual Pigments of Deep-Sea Fish , 1956, Nature.

[10]  Notes on the ERG analysis. , 1956, Acta physiologica Scandinavica. Supplementum.

[11]  L. Riggs,et al.  The disappearance of steadily fixated visual test objects. , 1953, Journal of the Optical Society of America.

[12]  K. Motokawa,et al.  Receptor potential of vertebrate retina. , 1957, Journal of neurophysiology.

[13]  O. Creutzfeldt,et al.  [Microphysiology of cortical neurons & their role in sensory and cerebral function]. , 1957, Deutsche medizinische Wochenschrift.

[14]  F. H. Adler PHYSIOLOGY OF THE EYE , 1960 .

[15]  J. G. Researches on Normal and Defective Colour Vision , 1947, Nature.

[16]  R. W. Ditchburn,et al.  The Stabilised Retinal Image , 1955 .

[17]  G. Svaetichin,et al.  A technique for oscillographic recording of spectral response curves. , 1956, Acta physiologica Scandinavica. Supplementum.

[18]  W. D. Wright,et al.  Researches on normal and defective colour vision , 1947 .

[19]  G. K. Smelser The Vertebrate Eye and Its Adaptive Radiation. , 1943 .

[20]  F. W. Munz Photosensitive pigments from retinas of deep-sea fishes. , 1957, Science.

[21]  D. Jameson,et al.  Some quantitative aspects of an opponent-colors theory. II. Brightness, saturation, and hue in normal and dichromatic vision. , 1955, Journal of the Optical Society of America.

[22]  R. W. DITCHBURN,et al.  Vision with a Stabilized Retinal Image , 1952, Nature.

[23]  D JAMESON,et al.  Some quantitative aspects of an opponent-colors theory. IV. A psychological color specification system. , 1956, Journal of the Optical Society of America.

[24]  G. Mitarai,et al.  The Lowest Intensity of Illumination to Produce the Maximum Cone Potentiail in the Fish Retina and its Ecological Meaning , 1957 .

[25]  W. D. Wright The Measurement and Analysis of Colour Adaptation Phenomena , 1934 .

[26]  Elliot Q. Adams,et al.  A Theory of Color Vision. , 1923 .

[27]  D JAMESON,et al.  Some quantitative aspects of an opponent-colors theory. III. Changes in brightness, saturation, and hue with chromatic adaptation. , 1956, Journal of the Optical Society of America.

[28]  D B JUDD,et al.  The color perceptions of deuteranopic and protanopic observers. , 1948, Journal of the Optical Society of America.

[29]  G. L. Walls,et al.  The Vertebrate Eye and Its Adaptive Radiation. , 2013 .

[30]  Ewald Hering,et al.  Grundzüge der Lehre vom Lichtsinn. , 1920 .

[31]  H. Grundfest THE SPECTRAL SENSIBILITY OF THE SUN-FISH AS EVIDENCE FOR A DOUBLE VISUAL SYSTEM , 1932, The Journal of general physiology.

[32]  L A RIGGS,et al.  Motions of the retinal image during fixation. , 1954, Journal of the Optical Society of America.

[33]  G. Svaetichin Aspects on human photoreceptor mechanisms. , 1956, Acta physiologica Scandinavica. Supplementum.

[34]  E. Ludvigh,et al.  Introduction to Physiological Optics , 1938 .

[35]  A. Churchill The Physiology of the Eye , 1949, The British journal of ophthalmology.

[36]  K. Herter,et al.  Die Fischdressuren und Ihre Sinnesphysiologischen Grundlagen , 1954 .

[37]  W. Hamilton,et al.  THE SENSIBILITY OF THE EYE TO DIFFERENCES IN WAVE-LENGTH , 1923 .

[38]  O G Jenkins,et al.  Researches on Normal and Defective Colour Vision , 1947 .

[39]  G. Svaetichin Receptor mechanisms for flicker and fusion. , 1956, Acta physiologica Scandinavica. Supplementum.

[40]  G. Svaetichin The cone function related to the activity of retinal neurons. , 1956, Acta physiologica Scandinavica. Supplementum.

[41]  L. A. Jones The Fundamental Scale of Pure Hue and Retinal Sensibility to Hue Differences1 , 1917 .

[42]  C. H. Graham,et al.  Color Defect and Color Theory , 1958, Science.