Mathematical models and software tools for the glucose-insulin regulatory system and diabetes: an overview

An overview of some of the mathematical models appearing in the literature for use in the glucose-insulin regulatory system in relation to diabetes is given, enhanced with a survey on available software. The models are in the form of ordinary differential, partial differential, delay differential and integro-differential equations. Some computational results are also presented.

[1]  C Cobelli,et al.  SAAM II: Simulation, Analysis, and Modeling Software for tracer and pharmacokinetic studies. , 1998, Metabolism: clinical and experimental.

[2]  A. Drozdov,et al.  A model for ultradian oscillations of insulin and glucose , 1995 .

[3]  J. Radziuk,et al.  An adaptive plasma glucose controller based on a nonlinear insulin/glucose model , 1994, IEEE Transactions on Biomedical Engineering.

[4]  Natal van Riel Minimal models for glucose and insulin kinetics - a Matlab implementation , 2004 .

[5]  R. Bergman Pathogenesis and prediction of diabetes mellitus: lessons from integrative physiology. , 2002, The Mount Sinai journal of medicine, New York.

[6]  M Pernarowski,et al.  Glucose diffusion in pancreatic islets of Langerhans. , 1998, Biophysical journal.

[7]  Meryl E. Wastney,et al.  Investigating Biological Systems Using Modeling: Strategies and Software , 1998 .

[8]  E. Mosekilde,et al.  Modeling the insulin-glucose feedback system: the significance of pulsatile insulin secretion. , 2000, Journal of theoretical biology.

[9]  ScienceDirect,et al.  Applied numerical mathematics , 1985 .

[10]  A. Sherman,et al.  Channel sharing in pancreatic beta -cells revisited: enhancement of emergent bursting by noise. , 2000, Journal of theoretical biology.

[11]  E. Cerasi Insulin deficiency and insulin resistance in the pathogenesis of NIDDM: is a divorce possible? , 1995, Diabetologia.

[12]  Bard Ermentrout,et al.  Simulating, analyzing, and animating dynamical systems - a guide to XPPAUT for researchers and students , 2002, Software, environments, tools.

[13]  J. Keener Diffusion induced oscillatory insulin secretion , 2001, Bulletin of mathematical biology.

[14]  C Cobelli,et al.  Quantitative Estimation of Beta Cell Sensitivity to Glucose in the Intact Organism: A Minimal Model of Insulin Kinetics in the Dog , 1980, Diabetes.

[15]  E Salzsieder,et al.  Mixed graphical models for simultaneous model identification and control applied to the glucose-insulin metabolism. , 1998, Computer methods and programs in biomedicine.

[16]  P Wach,et al.  Fuzzy filter for state estimation of a glucoregulatory system. , 1996, Computer methods and programs in biomedicine.

[17]  Giovanni Sparacino,et al.  Numerical non-identifiability regions of the minimal model of glucose kinetics: superiority of Bayesian estimation. , 2003, Mathematical biosciences.

[18]  R. Bergman,et al.  The evolution of β‐cell dysfunction and insulin resistance in type 2 diabetes , 2002, European journal of clinical investigation.

[19]  Claudio Cobelli,et al.  Models of subcutaneous insulin kinetics. A critical review , 2000, Comput. Methods Programs Biomed..

[20]  E. Kraegen,et al.  Insulin responses to varying profiles of subcutaneous insulin infusion: kinetic modelling studies , 1984, Diabetologia.

[21]  Y. Kuang,et al.  Modeling the glucose-insulin regulatory system and ultradian insulin secretory oscillations with two explicit time delays. , 2006, Journal of theoretical biology.

[22]  E. Mosekilde,et al.  Computer model for mechanisms underlying ultradian oscillations of insulin and glucose. , 1991, The American journal of physiology.

[23]  James P. Keener,et al.  Mathematical physiology , 1998 .

[24]  D Roose,et al.  Numerical bifurcation analysis of delay differential equations arising from physiological modeling , 2001, Journal of mathematical biology.

[25]  S Andreassen,et al.  DIAS--the diabetes advisory system: an outline of the system and the evaluation results obtained so far. , 1997, Computer methods and programs in biomedicine.

[26]  Per Hagander,et al.  Models for the insulin response to intravenous glucose , 1978 .

[27]  Malene Højbjerre,et al.  A Bayesian Approach to Bergman's Minimal Model , 2003, AISTATS.

[28]  Stephen P. Brooks,et al.  Bayesian model discrimination for inverse problems , 2003 .

[29]  R. Miura,et al.  A Model of β -Cell Mass, Insulin, and Glucose Kinetics: Pathways to Diabetes , 2000 .

[30]  C Cobelli,et al.  Hepatic glucose production during the labeled IVGTT: estimation by deconvolution with a new minimal model. , 1993, The American journal of physiology.

[31]  Z Benyó,et al.  A fully symbolic design and modeling of nonlinear glucose control with Control System Professional Suite (CSPS) of Mathematica. , 2004, Acta physiologica Hungarica.

[32]  Edward H. Twizell,et al.  An age structured model for complications of diabetes mellitus in Morocco , 2004, Simul. Model. Pract. Theory.

[33]  S. Wirkus,et al.  A Model of [ ]-Cell Mass, Insulin, Glucose, and Receptor Dynamics with Applications to Diabetes , 2001 .

[34]  Ovide Arino,et al.  Mathematical modelling of the intravenous glucose tolerance test , 2000, Journal of mathematical biology.

[35]  João Ricardo Faria Limit cycles in an optimal control problem of diabetes , 2003, Appl. Math. Lett..

[36]  Andrea Mari,et al.  Mathematical modeling in glucose metabolism and insulin secretion , 2002, Current opinion in clinical nutrition and metabolic care.

[37]  T. Deutsch,et al.  Application of computers in diabetes care--a review. II. Computers for decision support and education. , 1995, Medical informatics = Medecine et informatique.

[38]  R N Bergman,et al.  MINMOD: a computer program to calculate insulin sensitivity and pancreatic responsivity from the frequently sampled intravenous glucose tolerance test. , 1986, Computer methods and programs in biomedicine.

[39]  P Vicini,et al.  Estimation of endogenous glucose production after a glucose perturbation by nonparametric stochastic deconvolution. , 1997, Computer methods and programs in biomedicine.

[40]  A statistical approach to the determination of stability for dynamical systems modelling physiological processes , 2000 .

[41]  Abdesslam Boutayeb,et al.  Age structured models for diabetes in East Morocco , 2002, Math. Comput. Simul..

[42]  Z. Trajanoski,et al.  Numerical approximation of mathematical model for absorption of subcutaneously injected insulin , 2006, Medical and Biological Engineering and Computing.

[43]  Ricardo Femat,et al.  Blood glucose control for type I diabetes mellitus: A robust tracking H∞ problem , 2004 .

[44]  Ian F Godsland The minimal model: an evolving methodology. , 2003, Clinical science.

[45]  G. Grodsky,et al.  A threshold distribution hypothesis for packet storage of insulin and its mathematical modeling. , 1972, The Journal of clinical investigation.

[46]  Stephen A. Gourley,et al.  Asymptotic properties of a delay differential equation model for the interaction of glucose with plasma and interstitial insulin , 2004, Appl. Math. Comput..

[47]  Y. Z. Ider,et al.  Quantitative estimation of insulin sensitivity. , 1979, The American journal of physiology.

[48]  E. Lightfoot,et al.  A model for multiple subcutaneous insulin injections developed from individual diabetic patient data. , 1995, The American journal of physiology.

[49]  R. Bellazzi,et al.  The subcutaneous route to insulin-dependent diabetes therapy. , 2001, IEEE engineering in medicine and biology magazine : the quarterly magazine of the Engineering in Medicine & Biology Society.

[50]  C. Simon,et al.  Ultradian oscillations of insulin secretion in humans. , 2002, Diabetes.

[51]  V. Bolie,et al.  Coefficients of normal blood glucose regulation. , 1961, Journal of applied physiology.

[52]  Yang Kuang,et al.  Analysis of IVGTT glucose-insulin interaction models with time delay , 2001 .

[53]  C Cobelli,et al.  Minimal modeling, partition analysis, and the estimation of insulin sensitivity. , 1980, Federation proceedings.

[54]  R. Gleason,et al.  A Model of Glucose-insulin Homeostasis in Man that Incorporates the Heterogeneous Fast Pool Theory of Pancreatic Insulin Release , 1978, Diabetes.

[55]  Stephen P. Brooks,et al.  Bayesian Model Discrimination for Glucose-Insulin Homeostasis , 2004 .

[56]  O. Aslanidi,et al.  A model for glucose-induced wave propagation in pancreatic islets of Langerhans. , 2002, Journal of theoretical biology.

[57]  Peter Butler,et al.  Pulsatile insulin secretion: detection, regulation, and role in diabetes. , 2002, Diabetes.

[58]  Andrea De Gaetano,et al.  Modeling the intra-venous glucose tolerance test: A global study for a single-distributed-delay model , 2004 .

[59]  D Rodbard,et al.  Computer Simulation of Plasma Insulin and Glucose Dynamics After Subcutaneous Insulin Injection , 1989, Diabetes Care.

[60]  M. Modugno On behalf of the Editorial Board , 1992 .

[61]  Thomas F. Fairgrieve,et al.  AUTO 2000 : CONTINUATION AND BIFURCATION SOFTWARE FOR ORDINARY DIFFERENTIAL EQUATIONS (with HomCont) , 1997 .

[62]  E. Peschke,et al.  Evidence for a circadian rhythm of insulin release from perifused rat pancreatic islets , 1998, Diabetologia.

[63]  R S Parker,et al.  The intravenous route to blood glucose control. , 2001, IEEE engineering in medicine and biology magazine : the quarterly magazine of the Engineering in Medicine & Biology Society.

[64]  A. Boutayeb,et al.  The effect of physical exercise on the dynamics of glucose and insulin. , 2002, Journal of biomechanics.

[65]  Giuseppe De Nicolao,et al.  WINSTODEC: a stochastic deconvolution interactive program for physiological and pharmacokinetic systems , 2002, Comput. Methods Programs Biomed..

[66]  Richard N Bergman,et al.  The minimal model of glucose regulation: a biography. , 2003, Advances in experimental medicine and biology.

[67]  Giuseppe De Nicolao,et al.  Nonparametric input estimation in physiological systems: Problems, methods, and case studies , 1997, Autom..

[68]  Min Zhang,et al.  Calcium and glycolysis mediate multiple bursting modes in pancreatic islets. , 2004, Biophysical journal.