ROS production induced by BRAF inhibitor treatment rewires metabolic processes affecting cell growth of melanoma cells

[1]  J. Wargo,et al.  Primary, Adaptive, and Acquired Resistance to Cancer Immunotherapy , 2017, Cell.

[2]  Jessie Signorelli,et al.  Cobimetinib , 2017, The Annals of pharmacotherapy.

[3]  N. Hay,et al.  Reprogramming glucose metabolism in cancer: can it be exploited for cancer therapy? , 2016, Nature Reviews Cancer.

[4]  Jeffrey W. Smith,et al.  Metabolic rewiring in melanoma , 2016, Oncogene.

[5]  J. Larkin,et al.  Combination dabrafenib and trametinib in the management of advanced melanoma with BRAFV600 mutations , 2016, Expert opinion on pharmacotherapy.

[6]  N. Battello,et al.  The role of HIF-1 in oncostatin M-dependent metabolic reprogramming of hepatic cells , 2016, Cancer & metabolism.

[7]  C. Benelli,et al.  The pyruvate dehydrogenase complex in cancer: An old metabolic gatekeeper regulated by new pathways and pharmacological agents , 2016, International journal of cancer.

[8]  A. Bosserhoff,et al.  Glucose transporter isoform 1 expression enhances metastasis of malignant melanoma cells , 2015, Oncotarget.

[9]  T. Kietzmann,et al.  Antioxidant responses and cellular adjustments to oxidative stress , 2015, Redox biology.

[10]  M. Fransen,et al.  Antioxidant cytoprotection by peroxisomal peroxiredoxin-5. , 2015, Free radical biology & medicine.

[11]  R. Deberardinis,et al.  Metabolic pathways promoting cancer cell survival and growth , 2015, Nature Cell Biology.

[12]  J. Larkin,et al.  Tunable-combinatorial mechanisms of acquired resistance limit the efficacy of BRAF/MEK cotargeting but result in melanoma drug addiction. , 2015, Cancer cell.

[13]  Frank McCormick,et al.  Targeting RAF kinases for cancer therapy: BRAF-mutated melanoma and beyond , 2014, Nature Reviews Cancer.

[14]  N. Chandel,et al.  ROS Function in Redox Signaling and Oxidative Stress , 2014, Current Biology.

[15]  Jason Li,et al.  Response of BRAF-mutant melanoma to BRAF inhibition is mediated by a network of transcriptional regulators of glycolysis. , 2014, Cancer discovery.

[16]  G. Garçon,et al.  Mitochondrial oxidative stress is the achille's heel of melanoma cells resistant to Braf-mutant inhibitor , 2013, Oncotarget.

[17]  A. Aplin,et al.  Resistance to RAF inhibitors revisited , 2013, The Journal of investigative dermatology.

[18]  I. Behrmann,et al.  New Target Genes of MITF-Induced microRNA-211 Contribute to Melanoma Cell Invasion , 2013, PloS one.

[19]  J. Verrax,et al.  Role of AMPK activation in oxidative cell damage: Implications for alcohol-induced liver disease. , 2013, Biochemical pharmacology.

[20]  Kate S. Carroll,et al.  Redox regulation of protein kinases , 2013, Critical reviews in biochemistry and molecular biology.

[21]  T. Shlomi,et al.  A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence , 2013, Nature.

[22]  K. Flaherty,et al.  Pharmacodynamic effects and mechanisms of resistance to vemurafenib in patients with metastatic melanoma. , 2013, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[23]  Wan-Wan Lin,et al.  Nutrient deprivation induces the Warburg effect through ROS/AMPK-dependent activation of pyruvate dehydrogenase kinase. , 2013, Biochimica et biophysica acta.

[24]  J. Whitehead,et al.  Dichloroacetate inhibits aerobic glycolysis in multiple myeloma cells and increases sensitivity to bortezomib , 2013, British Journal of Cancer.

[25]  Jun S. Song,et al.  Oncogenic BRAF regulates oxidative metabolism via PGC1α and MITF. , 2013, Cancer cell.

[26]  N. Chandel,et al.  Physiological roles of mitochondrial reactive oxygen species. , 2012, Molecular cell.

[27]  J. Kirkwood,et al.  Importance of glycolysis and oxidative phosphorylation in advanced melanoma , 2012, Molecular Cancer.

[28]  Josep Malvehy,et al.  Diagnosis and treatment of melanoma. European consensus-based interdisciplinary guideline - Update 2016. , 2012, European journal of cancer.

[29]  P. Simon,et al.  Functional regulation of HIF‐1α under normoxia—is there more than post‐translational regulation? , 2012, Journal of cellular physiology.

[30]  Jason W. Locasale,et al.  Inhibition of Pyruvate Kinase M2 by Reactive Oxygen Species Contributes to Cellular Antioxidant Responses , 2011, Science.

[31]  Andrei L Osterman,et al.  Comparative Metabolic Flux Profiling of Melanoma Cell Lines , 2011, The Journal of Biological Chemistry.

[32]  A. Hauschild,et al.  Improved survival with vemurafenib in melanoma with BRAF V600E mutation. , 2011, The New England journal of medicine.

[33]  P. Schumacker,et al.  Hypoxia Triggers AMPK Activation through Reactive Oxygen Species-Mediated Activation of Calcium Release-Activated Calcium Channels , 2011, Molecular and Cellular Biology.

[34]  Y. Ho,et al.  Intraperoxisomal redox balance in mammalian cells: oxidative stress and interorganellar cross-talk , 2011, Molecular biology of the cell.

[35]  N. Rosen,et al.  Mutant BRAF melanomas--dependence and resistance. , 2011, Cancer cell.

[36]  K. Flaherty,et al.  Inhibition of mutated, activated BRAF in metastatic melanoma. , 2010, The New England journal of medicine.

[37]  A. Bosserhoff,et al.  Constitutive HIF-1 activity in malignant melanoma. , 2010, European journal of cancer.

[38]  M. Belvin,et al.  RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth , 2010, Nature.

[39]  Chao Zhang,et al.  RAF inhibitors transactivate RAF dimers and ERK signaling in cells with wild-type BRAF , 2010, Nature.

[40]  K. Kinzler,et al.  Glucose Deprivation Contributes to the Development of KRAS Pathway Mutations in Tumor Cells , 2009, Science.

[41]  L. Chin,et al.  Oncogenic B-RAF negatively regulates the tumor suppressor LKB1 to promote melanoma cell proliferation. , 2009, Molecular cell.

[42]  Michael P. Murphy,et al.  How mitochondria produce reactive oxygen species , 2008, The Biochemical journal.

[43]  T. Roche,et al.  Pyruvate dehydrogenase kinase regulatory mechanisms and inhibition in treating diabetes, heart ischemia, and cancer , 2007, Cellular and Molecular Life Sciences.

[44]  I. Behrmann,et al.  A cost effective non-commercial ECL-solution for Western blot detections yielding strong signals and low background. , 2007, Journal of immunological methods.

[45]  M. Patel,et al.  Regulation of the pyruvate dehydrogenase complex. , 2006, Biochemical Society transactions.

[46]  M. Holness,et al.  Mechanisms underlying regulation of the expression and activities of the mammalian pyruvate dehydrogenase kinases , 2006, Archives of physiology and biochemistry.

[47]  R. Tsien,et al.  Imaging Dynamic Redox Changes in Mammalian Cells with Green Fluorescent Protein Indicators* , 2004, Journal of Biological Chemistry.

[48]  Devin Oglesbee,et al.  Investigating Mitochondrial Redox Potential with Redox-sensitive Green Fluorescent Protein Indicators* , 2004, Journal of Biological Chemistry.

[49]  A. Nicholson,et al.  Mutations of the BRAF gene in human cancer , 2002, Nature.

[50]  Mulchand S Patel,et al.  Regulation of mammalian pyruvate dehydrogenase complex by phosphorylation: complexity of multiple phosphorylation sites and kinases , 2001, Experimental & Molecular Medicine.

[51]  D. Theodorescu,et al.  Cell density mediated pericellular hypoxia leads to induction of HIF-1α via nitric oxide and Ras/MAP kinase mediated signaling pathways , 2001, Oncogene.

[52]  K. M. Popov,et al.  Isoenzymes of Pyruvate Dehydrogenase Phosphatase , 1998, The Journal of Biological Chemistry.

[53]  M. Patel,et al.  Mutagenesis Studies of the Phosphorylation Sites of Recombinant Human Pyruvate Dehydrogenase. SITE-SPECIFIC REGULATION (*) , 1995, The Journal of Biological Chemistry.

[54]  Sébastien Bonnet,et al.  A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. , 2007, Cancer cell.

[55]  P. Heinrich,et al.  Oncostatin M-induced activation of stress-activated MAP kinases depends on tyrosine 861 in the OSM receptor and requires Jak1 but not Src kinases. , 2006, Cellular signalling.