On C*-Algebras Associated with Subshifts

We construct and study C*-algebras associated with subshifts in symbolic dynamics as a generalization of Cuntz–Krieger algebras for topological Markov shifts. We prove some universal properties for the C*-algebras and give a criterion for them to be simple and purely infinite. We also present an example of a C*-algebra coming from a subshift which is not conjugate to a Markov shift.