Optofluidic devices and applications in photonics, sensing and imaging.

Optofluidics integrates the fields of photonics and microfluidics, providing new freedom to both fields and permitting the realization of optical and fluidic property manipulations at the chip scale. Optofluidics was formed only after many breakthroughs in microfluidics, as understanding of fluid behaviour at the micron level enabled researchers to combine the advantages of optics and fluids. This review describes the progress of optofluidics from a photonics perspective, highlighting various optofluidic aspects ranging from the device's property manipulation to an interactive integration between optics and fluids. First, we describe photonic elements based on the functionalities that enable fluid manipulation. We then discuss the applications of optofluidic biodetection with an emphasis on nanosensing. Next, we discuss the progress of optofluidic lenses with an emphasis on its various architectures, and finally we conceptualize on where the field may lead.

[1]  George M. Whitesides,et al.  Control of the shape of liquid lenses on a modified gold surface using an applied electrical potential across a self-assembled monolayer , 1995 .

[2]  Claudiu A. Stan Liquid optics: Oscillating lenses focus fast , 2008 .

[3]  Fredrik Höök,et al.  Locally functionalized short-range ordered nanoplasmonic pores for bioanalytical sensing. , 2010, Analytical chemistry.

[4]  A. Hawkins,et al.  On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguides , 2007 .

[5]  H. Raether Surface Plasmons on Smooth and Rough Surfaces and on Gratings , 1988 .

[6]  Xudong Fan,et al.  PDMS embedded opto-fluidic microring resonator lasers. , 2008, Optics express.

[7]  Y. Fainman,et al.  High-resolution surface plasmon resonance sensor based on linewidth-optimized nanohole array transmittance. , 2006, Optics letters.

[8]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[9]  Demetri Psaltis,et al.  Optofluidics for energy applications , 2011, 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC.

[10]  Nam-Trung Nguyen,et al.  Micro-optofluidic Lenses: A review. , 2010, Biomicrofluidics.

[11]  Sindy K. Y. Tang,et al.  A multi-color fast-switching microfluidic droplet dye laser. , 2009, Lab on a chip.

[12]  Edo Waks,et al.  Manipulating quantum dots to nanometer precision by control of flow. , 2010, Nano letters.

[13]  G. Whitesides,et al.  Torque-actuated valves for microfluidics. , 2005, Analytical chemistry.

[14]  Tony Jun Huang,et al.  An in-plane, variable optical attenuator using a fluid-based tunable reflective interface , 2009 .

[15]  Xudong Fan,et al.  Bioinspired optofluidic FRET lasers via DNA scaffolds , 2010, Proceedings of the National Academy of Sciences.

[16]  Rajan P Kulkarni,et al.  Label-Free, Single-Molecule Detection with Optical Microcavities , 2007, Science.

[17]  Ahmet Ali Yanik,et al.  Sub-wavelength Nanofluidics in Photonic Crystal Sensors References and Links , 2022 .

[18]  Tianqing Jia,et al.  Quadrupole plasmon resonance mode in nanocrescent/nanodisk structure:Local field enhancement and tunability in the visible light region , 2011 .

[19]  David Sinton,et al.  Polarization-dependent sensing of a self-assembled monolayer using biaxial nanohole arrays , 2008 .

[20]  Seung-Wan Lee,et al.  Microfluidic design and fabrication of wafer-scale varifocal liquid lens , 2009, Optical Engineering + Applications.

[21]  David Sinton,et al.  Nanoholes as nanochannels: flow-through plasmonic sensing. , 2009, Analytical chemistry.

[22]  Wonsuk Lee,et al.  A quasi-droplet optofluidic ring resonator laser using a micro-bubble , 2011 .

[23]  A. K. Agarwal,et al.  Adaptive liquid microlenses activated by stimuli-responsive hydrogels , 2006, Nature.

[24]  G. Whitesides,et al.  Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane). , 1998, Analytical chemistry.

[25]  C. Effenhauser,et al.  Integrated capillary electrophoresis on flexible silicone microdevices:  analysis of DNA restriction fragments and detection of single DNA molecules on microchips. , 1997, Analytical chemistry.

[26]  S. Howorka,et al.  Sequence-specific detection of individual DNA strands using engineered nanopores , 2001, Nature Biotechnology.

[27]  Patrick Dumais,et al.  Monolithic integration of microfluidic channels, liquid-core waveguides, and silica waveguides on silicon. , 2006, Applied optics.

[28]  Amir Hirsa,et al.  Fast focusing using a pinned-contact oscillating liquid lens , 2008 .

[29]  Ki-Hun Jeong,et al.  Tunable microdoublet lens array , 2004, 17th IEEE International Conference on Micro Electro Mechanical Systems. Maastricht MEMS 2004 Technical Digest.

[30]  N. Peyghambarian,et al.  Integrated liquid-core optical fibers for ultra-efficient nonlinear liquid photonics , 2012, 2012 Conference on Lasers and Electro-Optics (CLEO).

[31]  Yeshaiahu Fainman,et al.  Real-time template-assisted manipulation of nanoparticles in a multilayer nanofluidic chip. , 2011, Small.

[32]  Chun-Hao Chen,et al.  Microfluidics and photonics for Bio‐System‐on‐a‐Chip: A review of advancements in technology towards a microfluidic flow cytometry chip , 2008, Journal of biophotonics.

[33]  Sergei V. Shabanov,et al.  Electromagnetic bound states in the radiation continuum for periodic double arrays of subwavelength dielectric cylinders , 2010, 1005.2962.

[34]  M. Taniguchi,et al.  Identifying single nucleotides by tunnelling current. , 2010, Nature nanotechnology.

[35]  G. Whitesides,et al.  Rapid prototyping of microfluidic switches in poly(dimethyl siloxane) and their actuation by electro-osmotic flow , 1999 .

[36]  Hans Zappe,et al.  Tunable microfluidic microlenses. , 2005, Applied optics.

[37]  Yu-Hwa Lo,et al.  Fluidic adaptive lens of transformable lens type , 2004 .

[38]  J. Homola Surface plasmon resonance based sensors , 2006 .

[39]  Xudong Fan,et al.  Optofluidic Microsystems for Chemical and Biological Analysis. , 2011, Nature photonics.

[40]  Aaron R. Hawkins,et al.  Handbook of Optofluidics , 2010 .

[41]  Y. Fainman,et al.  Optofluidic 1×4 switch , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[42]  Seung-Man Yang,et al.  Pneumatic control of a liquid-core/liquid-cladding waveguide as the basis for an optofluidic switch , 2011 .

[43]  S. Quake,et al.  Microfluidics: Fluid physics at the nanoliter scale , 2005 .

[44]  Henrik S. Sørensen,et al.  Free-Solution, Label-Free Molecular Interactions Studied by Back-Scattering Interferometry , 2007, Science.

[45]  Axel Günther,et al.  Micromixing of miscible liquids in segmented gas-liquid flow. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[46]  De-Ying Zhang,et al.  Fluidic adaptive lens with high focal length tunability , 2003 .

[47]  Sindy K. Y. Tang,et al.  Dynamically reconfigurable liquid-core liquid-cladding lens in a microfluidic channel. , 2008, Lab on a chip.

[48]  Yeshaiahu Fainman,et al.  Observation of the splitting of degenerate surface plasmon polariton modes in a two-dimensional metallic nanohole array , 2007 .

[49]  H. Bayley,et al.  Continuous base identification for single-molecule nanopore DNA sequencing. , 2009, Nature nanotechnology.

[50]  Vincent Studer,et al.  Scaling properties of a low-actuation pressure microfluidic valve , 2004 .

[51]  Uriel Levy,et al.  Tunable optofluidic devices , 2008 .

[52]  Nam-Trung Nguyen,et al.  A micro optofluidic lens with short focal length , 2009 .

[53]  G. Whitesides The origins and the future of microfluidics , 2006, Nature.

[54]  Tony Jun Huang,et al.  Tunable two-dimensional liquid gradient refractive index (L-GRIN) lens for variable light focusing. , 2010, Lab on a chip.

[55]  Seung S. Lee,et al.  Focal tunable liquid lens integrated with an electromagnetic actuator , 2007 .

[56]  Bruce K. Gale,et al.  A PDMS-based gas permeation pump for on-chip fluid handling in microfluidic devices , 2006 .

[57]  D. Psaltis,et al.  Developing optofluidic technology through the fusion of microfluidics and optics , 2006, Nature.

[58]  M. Ghadiri,et al.  A porous silicon-based optical interferometric biosensor. , 1997, Science.

[59]  J. Rogers,et al.  Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals , 2006, Proceedings of the National Academy of Sciences.

[60]  Nam-Trung Nguyen,et al.  Micromixers?a review , 2005 .

[61]  Jeffrey N. Anker,et al.  Biosensing with plasmonic nanosensors. , 2008, Nature materials.

[62]  K. Kavanagh,et al.  Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[63]  Demetri Psaltis,et al.  Optofluidic evanescent dye laser based on a distributed feedback circular grating , 2009 .

[64]  P. Fauchet,et al.  Two-dimensional silicon photonic crystal based biosensing platform for protein detection. , 2007, Optics express.

[65]  Günter Gauglitz,et al.  Surface plasmon resonance sensors: review , 1999 .

[66]  Jong Wook Hong,et al.  Integrated nanoliter systems , 2003, Nature Biotechnology.

[67]  Martin Schadt,et al.  Optical patterning of multi-domain liquid-crystal displays with wide viewing angles , 1996, Nature.

[68]  Heather K Hunt,et al.  Label-free biological and chemical sensors. , 2010, Nanoscale.

[69]  Yeshaiahu Fainman,et al.  Pneumatically actuated adaptive lenses with millisecond response time , 2007 .

[70]  B. Liedberg,et al.  Gas detection by means of surface plasmon resonance , 1982 .

[71]  Luke P. Lee,et al.  Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect. , 2005, Nano letters.

[72]  Bruce K. Gale,et al.  Determining the optimal PDMS–PDMS bonding technique for microfluidic devices , 2008 .

[73]  Demetri Psaltis,et al.  A microfluidic 2×2 optical switch , 2004 .

[74]  Luke P. Lee,et al.  Tunable liquid-filled microlens array integrated with microfluidic network. , 2003, Optics express.

[75]  Yeshaiahu Fainman,et al.  Set of two orthogonal adaptive cylindrical lenses in a monolith elastomer device. , 2005, Optics express.

[76]  Yeshaiahu Fainman,et al.  On-chip microfluidic tuning of an optical microring resonator , 2006 .

[77]  Demetri Psaltis,et al.  Mechanically tunable optofluidic distributed feedback dye laser. , 2006 .

[78]  Jennifer S. Shumaker-Parry,et al.  Fabrication of Crescent‐Shaped Optical Antennas , 2005 .

[79]  Hongrui Jiang,et al.  Tunable liquid microlens actuated by infrared light-responsive hydrogel , 2008 .

[80]  S. Quake,et al.  Monolithic microfabricated valves and pumps by multilayer soft lithography. , 2000, Science.

[81]  Yeshaiahu Fainman,et al.  Controlled detection in composite nanoresonant array for surface plasmon resonance sensing. , 2009, Optics express.

[82]  George M. Whitesides,et al.  Design for mixing using bubbles in branched microfluidic channels , 2005 .

[83]  B. Krauskopf,et al.  Proc of SPIE , 2003 .

[84]  George M Whitesides,et al.  A low-threshold, high-efficiency microfluidic waveguide laser. , 2005, Journal of the American Chemical Society.

[85]  Seung-Wan Lee,et al.  Liquid-filled varifocal lens on a chip , 2009, MOEMS-MEMS.

[86]  A. Hawkins,et al.  The photonic integration of non-solid media using optofluidics , 2011 .

[87]  Demetri Psaltis,et al.  Pneumatically tunable optofluidic 2 × 2 switch for reconfigurable optical circuit. , 2011, Lab on a chip.

[88]  Ermanno F. Borra The case for a liquid mirror in a lunar-based telescope , 1991 .

[89]  G. Whitesides,et al.  Dynamic control of liquid-core/liquid-cladding optical waveguides , 2004, (CLEO). Conference on Lasers and Electro-Optics, 2005..

[90]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[91]  H. Lezec,et al.  Extraordinary optical transmission through sub-wavelength hole arrays , 1998, Nature.

[92]  Ai Qun Liu,et al.  Determination of single living cell’s dry/water mass using optofluidic chip , 2007 .

[93]  Xudong Fan,et al.  Optofluidic ring resonator based dye laser , 2007 .

[94]  O. Urakawa,et al.  Small - , 2007 .

[95]  S. Patskovsky,et al.  Intensity based surface plasmon resonance sensor using a nanohole rectangular array. , 2011, Optics express.

[96]  Sindy K. Y. Tang,et al.  Continuously tunable microdroplet-laser in a microfluidic channel. , 2011, Optics express.

[97]  Harald Giessen,et al.  Nanoantenna-enhanced gas sensing in a single tailored nanofocus , 2011, CLEO: 2011 - Laser Science to Photonic Applications.