Integrating Global and Local Analysis of Color, Texture and Geometrical Information for Categorizing Laryngeal Images

An approach to integrating the global and local kernel-based automated analysis of vocal fold images aiming to categorize laryngeal diseases is presented in this paper. The problem is treated as an image analysis and recognition task. A committee of support vector machines is employed for performing the categorization of vocal fold images into healthy, diffuse and nodular classes. Analysis of image color distribution, Gabor filtering, cooccurrence matrices, analysis of color edges, image segmentation into homogeneous regions from the image color, texture and geometry view point, analysis of the soft membership of the regions in the decision classes, the kernel principal components based feature extraction are the techniques employed for the global and local analysis of laryngeal images. Bearing in mind the high similarity of the decision classes, the correct classification rate of over 94% obtained when testing the system on 785 vocal fold images is rather encouraging.

[1]  L Edenbrandt,et al.  Improved classifications of myocardial bull's-eye scintigrams with computer-based decision support system. , 1999, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[2]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[3]  Mattias Ohlsson,et al.  WeAidU - a decision support system for myocardial perfusion images using artificial neural networks , 2004, Artif. Intell. Medicine.

[4]  Gunther Wyszecki,et al.  Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd Edition , 2000 .

[5]  C. Palm,et al.  Classification of color textures by Gabor filtering , 2002 .

[6]  T Murry,et al.  Nomenclature of voice disorders and vocal pathology. , 2000, Otolaryngologic clinics of North America.

[7]  Steven M. Zeitels,et al.  Atlas of phonomicrosurgery and other endolaryngeal procedures for benign and malignant disease , 2001 .

[8]  Antanas Verikas,et al.  Soft combination of neural classifiers: A comparative study , 1999, Pattern Recognit. Lett..

[9]  Leo Breiman,et al.  Pasting Small Votes for Classification in Large Databases and On-Line , 1999, Machine Learning.

[10]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  M Borggrefe,et al.  Cardiac 123I-MIBG uptake in idiopathic ventricular tachycardia and fibrillation. , 1999, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[12]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1997, EuroCOLT.

[13]  Konstantinos N. Plataniotis,et al.  Comprehensive Analysis of Edge Detection in Color Image Processing , 1999 .

[14]  H. K. Schutte,et al.  Consistency of the preoperative and intraoperative diagnosis of benign vocal fold lesions. , 2003, Journal of voice : official journal of the Voice Foundation.

[15]  G. Friedrich,et al.  Phonosurgery of the vocal folds: a classification proposal , 2002, European Archives of Oto-Rhino-Laryngology.

[16]  Antanas Verikas,et al.  Intelligent Vocal Cord Image Analysis for Categorizing Laryngeal Diseases , 2005, IEA/AIE.

[17]  Mary M. Galloway,et al.  Texture analysis using gray level run lengths , 1974 .

[18]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[19]  Jacques Bouaud,et al.  Using OncoDoc as a computer-based eligibility screening system to improve accrual onto breast cancer clinical trials , 2001, Artif. Intell. Medicine.

[20]  Jeffrey C. Lagarias,et al.  Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions , 1998, SIAM J. Optim..

[21]  S.J.J. Smith,et al.  Empirical Methods for Artificial Intelligence , 1995 .

[22]  Jing Li Wang,et al.  Color image segmentation: advances and prospects , 2001, Pattern Recognit..

[23]  Nello Cristianini,et al.  Kernel Methods for Pattern Analysis , 2003, ICTAI.

[24]  Bernhard Schölkopf,et al.  Support vector learning , 1997 .

[25]  P. Nikkels,et al.  Benign Lesions of the Vocal Folds: Histopathology and Phonotrauma , 1995, The Annals of otology, rhinology, and laryngology.

[26]  C. Palm,et al.  Colour texture analysis for quantitative laryngoscopy , 2003, Acta oto-laryngologica.

[27]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[28]  Zia-ur Rahman,et al.  Retinex processing for automatic image enhancement , 2004, J. Electronic Imaging.

[29]  Zia-ur Rahman,et al.  Properties and performance of a center/surround retinex , 1997, IEEE Trans. Image Process..

[30]  Andrew Todd-Pokropek,et al.  The development and evaluation of CADMIUM: a prototype system to assist in the interpretation of mammograms , 1999, Medical Image Anal..

[31]  Antanas Verikas,et al.  Towards a computer-aided diagnosis system for vocal cord diseases , 2006, Artif. Intell. Medicine.

[32]  O. Kleinsasser,et al.  Mikrolaryngoskopie und endolaryngeale Mikrochirurgie : Technik und typische Befunde , 1968 .