Predict, prevent and personalize: Genomic and proteomic approaches to cardiovascular medicine.

Genomic and proteomic approaches to cardiovascular medicine promise to revolutionize our understanding of disease initiation and progression. This improved appreciation of pathophysiology may be translated into avenues of clinical utility. Gene-based presymptomatic prediction of illness, finer diagnostic subclassifications and improved risk assessment tools will permit earlier and more targeted intervention. Pharmacogenetics will guide our therapeutic decisions and monitor response to therapy. Personalized medicine will require the integration of clinical information, stable and dynamic genomics, and molecular phenotyping. Bioinformatics will be crucial in translating these data into useful applications, leading to improved diagnosis, prediction, prognostication and treatment. The present paper reviews the potential contributions of genomic and proteomic approaches in developing a more personalized approach to cardiovascular medicine.

[1]  G. Aithal,et al.  Association of polymorphisms in the cytochrome P450 CYP2C9 with warfarin dose requirement and risk of bleeding complications , 1999, The Lancet.

[2]  Ian Humphery-Smith,et al.  A human proteome project with a beginning and an end , 2004, Proteomics.

[3]  N. Le Meur,et al.  Distinct molecular portraits of human failing hearts identified by dedicated cDNA microarrays , 2004, European journal of heart failure.

[4]  E Fleck,et al.  The construction of the World Wide Web‐accessible myocardial two‐dimensional gel electrophoresis protein database “HEART‐2DPAGE”: A practical approach , 1996, Electrophoresis.

[5]  R. Irizarry,et al.  Gene expression analysis of ischemic and nonischemic cardiomyopathy: shared and distinct genes in the development of heart failure. , 2005, Physiological genomics.

[6]  L. Lazzeroni,et al.  A polymorphism within a conserved β1-adrenergic receptor motif alters cardiac function and β-blocker response in human heart failure , 2006 .

[7]  W. Koch,et al.  Differential gene expression and genomic patient stratification following left ventricular assist device support. , 2003, Journal of the American College of Cardiology.

[8]  M. Lehmann,et al.  The long QT syndrome family of cardiac ion channelopathies: A HuGE review* , 2006, Genetics in Medicine.

[9]  J. V. Van Beeumen,et al.  Alterations in mouse cardiac proteome after in vivo myocardial infarction: permanent ischaemia versus ischaemia–reperfusion , 2005, Experimental physiology.

[10]  D. Khatry,et al.  Expression profiling of blood samples from an SU5416 Phase III metastatic colorectal cancer clinical trial: a novel strategy for biomarker identification , 2003, BMC Cancer.

[11]  Martin Farrall,et al.  Genetic susceptibility to coronary artery disease: from promise to progress , 2006, Nature Reviews Genetics.

[12]  H. Calkins,et al.  Arrhythmogenic right ventricular dysplasia/ cardiomyopathy , 2005, Current treatment options in cardiovascular medicine.

[13]  Deborah A Nickerson,et al.  Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. , 2005, The New England journal of medicine.

[14]  M. Dunn,et al.  Construction of HSC‐2DPAGE: A two‐dimensional gel electrophoresis database of heart proteins , 1997, Electrophoresis.

[15]  G. MacGowan,et al.  Pharmacogenetic interactions between angiotensin-converting enzyme inhibitor therapy and the angiotensin-converting enzyme deletion polymorphism in patients with congestive heart failure. , 2004, Journal of the American College of Cardiology.

[16]  S. Hanash Disease proteomics : Proteomics , 2003 .

[17]  Christopher J. Lee,et al.  A genomic view of alternative splicing , 2002, Nature Genetics.

[18]  C. Carlson,et al.  Mapping complex disease loci in whole-genome association studies , 2004, Nature.

[19]  Howard L McLeod,et al.  Pharmacogenomics--drug disposition, drug targets, and side effects. , 2003, The New England journal of medicine.

[20]  K. Margulies,et al.  Mixed Messages: Transcription Patterns in Failing and Recovering Human Myocardium , 2005, Circulation research.

[21]  P. Charron,et al.  The genetic bases of cardiomyopathies , 2006 .

[22]  Raimond L Winslow,et al.  Gene expression profiles in end-stage human idiopathic dilated cardiomyopathy: altered expression of apoptotic and cytoskeletal genes. , 2004, Genomics.

[23]  B. Jugdutt,et al.  Detection of regional changes in protein levels in the in vivo canine model of acute heart failure following ischemia‐reperfusion injury: Functional proteomics studies , 2004, Proteomics.

[24]  Stefan Kääb,et al.  Global gene expression in human myocardium—oligonucleotide microarray analysis of regional diversity and transcriptional regulation in heart failure , 2004, Journal of Molecular Medicine.

[25]  D. K. Arrell,et al.  Cardiovascular proteomics: evolution and potential. , 2001, Circulation research.

[26]  J. Epstein,et al.  Detection of Cardiac Allograft Rejection and Response to Immunosuppressive Therapy With Peripheral Blood Gene Expression , 2004, Circulation.

[27]  Xinqiang Han,et al.  Genomic profiling of the human heart before and after mechanical support with a ventricular assist device reveals alterations in vascular signaling networks. , 2004, Physiological genomics.

[28]  C. Lane,et al.  Mass spectrometry-based proteomics in the life sciences , 2005, Cellular and Molecular Life Sciences CMLS.

[29]  Joshua M Hare,et al.  Molecular signature analysis: using the myocardial transcriptome as a biomarker in cardiovascular disease. , 2005, Trends in cardiovascular medicine.

[30]  M. Pirmohamed,et al.  The future prospects of pharmacogenetics in oral anticoagulation therapy. , 2006, British journal of clinical pharmacology.

[31]  E. Winzeler,et al.  Genomics, gene expression and DNA arrays , 2000, Nature.

[32]  J. V. Van Eyk,et al.  A robust, streamlined, and reproducible method for proteomic analysis of serum by delipidation, albumin and IgG depletion, and two‐dimensional gel electrophoresis , 2005, Proteomics.

[33]  Paul D Allen,et al.  Global gene expression profiling of end-stage dilated cardiomyopathy using a human cardiovascular-based cDNA microarray. , 2002, The American journal of pathology.

[34]  H. Kitano Systems Biology: A Brief Overview , 2002, Science.

[35]  Michael J Dunn,et al.  Use of proteomics to discover novel markers of cardiac allograft rejection. , 2004, Journal of proteome research.

[36]  George C Tseng,et al.  Microarray gene expression profiles in dilated and hypertrophic cardiomyopathic end-stage heart failure. , 2002, Physiological genomics.

[37]  D. K. Arrell,et al.  Proteomic Analysis of Pharmacological Preconditioning: Novel Protein Targets Converge to Mitochondrial Metabolism Pathways , 2006, Circulation research.

[38]  R. Roberts Mechanisms of Disease: genetic mechanisms of atrial fibrillation , 2006, Nature Clinical Practice Cardiovascular Medicine.

[39]  Pharmacogenetic Interactions Between β-Blocker Therapy and the Angiotensin-Converting Enzyme Deletion Polymorphism in Patients With Congestive Heart Failure , 2001 .

[40]  G. Dorn,et al.  β1-adrenergic receptor polymorphisms confer differential function and predisposition to heart failure , 2003, Nature Medicine.

[41]  L. Miller,et al.  Alterations of gene expression in failing myocardium following left ventricular assist device support. , 2003, Physiological genomics.

[42]  E. Lakatta,et al.  Sex- and age-dependent human transcriptome variability: Implications for chronic heart failure , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[43]  Norbert Wiener,et al.  Cybernetics: Control and Communication in the Animal and the Machine. , 1949 .

[44]  Leena Peltonen,et al.  Genetics of familial combined hyperlipidemia , 2006, Current opinion in lipidology.

[45]  Manuel Hidalgo,et al.  Disease-associated expression profiles in peripheral blood mononuclear cells from patients with advanced renal cell carcinoma. , 2003, Cancer research.

[46]  Melanie Y. White,et al.  Proteomics of ischemia/reperfusion injury in rabbit myocardium reveals alterations to proteins of essential functional systems , 2005, Proteomics.

[47]  J. Hopfield,et al.  From molecular to modular cell biology , 1999, Nature.

[48]  J. Listgarten,et al.  Statistical and Computational Methods for Comparative Proteomic Profiling Using Liquid Chromatography-Tandem Mass Spectrometry , 2005, Molecular & Cellular Proteomics.

[49]  Peipei Ping,et al.  Cardiovascular proteomics: tools to develop novel biomarkers and potential applications. , 2006, Journal of the American College of Cardiology.

[50]  L. Emens Trastuzumab: Targeted Therapy for the Management of HER-2/neu-Overexpressing Metastatic Breast Cancer , 2005, American journal of therapeutics.

[51]  J. V. Van Eyk,et al.  Effective removal of albumin from serum , 2005, Proteomics.

[52]  E. Petricoin,et al.  Mapping molecular networks using proteomics: a vision for patient-tailored combination therapy. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[53]  R. Aebersold,et al.  Mass spectrometry-based proteomics , 2003, Nature.

[54]  M. Tyers,et al.  From genomics to proteomics , 2003, Nature.

[55]  Mark A Sussman,et al.  Myocardial subproteomic analysis of a constitutively active Rac1-expressing transgenic mouse with lethal myocardial hypertrophy. , 2005, American journal of physiology. Heart and circulatory physiology.

[56]  E. Müller,et al.  High‐performance human myocardial two‐dimensional electrophoresis database: Edition 1996 , 1996, Electrophoresis.

[57]  P. Ping,et al.  Mapping the Murine Cardiac 26S Proteasome Complexes , 2006, Circulation research.

[58]  J. Seidman,et al.  A molecular basis for familial hypertrophic cardiomyopathy: A β cardiac myosin heavy chain gene missense mutation , 1990, Cell.

[59]  R. Tyndale,et al.  Genetic Influences on Smoking: A Brief Review , 2005, Therapeutic drug monitoring.

[60]  F. Collins,et al.  A vision for the future of genomics research , 2003, Nature.

[61]  A. Barabasi,et al.  Network biology: understanding the cell's functional organization , 2004, Nature Reviews Genetics.

[62]  S. Cook,et al.  DNA Microarrays : Implications for Cardiovascular Medicine , 2002 .

[63]  D. Levy,et al.  Association of parental heart failure with risk of heart failure in offspring. , 2006, The New England journal of medicine.