Vertex Splines and Their Applications to Interpolation of Discrete Data

[1]  Charles K. Chui,et al.  A General framework for local interpolation , 1990 .

[2]  Charles K. Chui,et al.  On bivariate super vertex splines , 1990 .

[3]  C. Chui,et al.  Corrigenda: “On the dimension of bivariate superspline spaces” [Math.\ Comp.\ {53} (1989), no.\ 187, 219–234; MR0969483 (90c:41014)] , 1990 .

[4]  Charles K. Chui,et al.  Multivariate vertex splines and finite elements , 1990 .

[5]  C. Chui,et al.  Bivariate C 1 Quadratic Finite Elements and Vertex Splines , 1990 .

[6]  Larry L. Schumaker,et al.  On super splines and finite elements , 1989 .

[7]  Wolfgang Dahmen,et al.  Local spline interpolation schemes in one and several variables , 1989 .

[8]  Klaus Höllig,et al.  Approximation power of smooth bivariate PP functions , 1988 .

[9]  C. Micchelli,et al.  Compactly supported fundamental functions for spline interpolation , 1988 .

[10]  C. Chui On minimal and quasi-minimal supported bivariate splines , 1988 .

[11]  I. J. Schoenberg Contributions to the Problem of Approximation of Equidistant Data by Analytic Functions , 1988 .

[12]  Larry L. Schumaker,et al.  Topics in Multivariate Approximation , 1987 .

[13]  Bruce R. Piper,et al.  An explicit basis for C 1 quartic by various bivariate splines , 1987 .

[14]  C. Chui,et al.  A natural formulation of quasi-interpolation by multivariate splines , 1987 .

[15]  Charles K. Chui,et al.  On multivariate Vertex splines and Applications , 1987, Topics in Multivariate Approximation.

[16]  Larry L. Schumaker,et al.  Approximation Theory V , 1986 .

[17]  Klaus Höllig,et al.  Minimal Support for Bivariate Splines. , 1986 .

[18]  Rong-Qing Jia,et al.  Controlled approximation and a characterization of the local approximation order , 1985 .

[19]  Ming-Jun Lai,et al.  On Bivariate Vertex Splines , 1985 .

[20]  C. Micchelli,et al.  On the approximation order from certain multivariate spline spaces , 1984, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[21]  W. Schempp,et al.  Multivariate Approximation Theory IV , 1989 .

[22]  M. Powell,et al.  Approximation theory and methods , 1984 .

[23]  D X Qi,et al.  A Class of Local Explicit Many-Knot Spline Interpolation Schemes. , 1981 .

[24]  L. Schumaker Spline Functions: Basic Theory , 1981 .

[25]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[26]  A. Ženíšek,et al.  A general theorem on triangular finite $C^{(m)}$-elements , 1974 .

[27]  C. D. Boor,et al.  Spline approximation by quasiinterpolants , 1973 .

[28]  I. J. Schoenberg Contributions to the problem of approximation of equidistant data by analytic functions. Part A. On the problem of smoothing or graduation. A first class of analytic approximation formulae , 1946 .