Photothermal antimicrobial nanotherapy and nanodiagnostics with self‐assembling carbon nanotube clusters

Unique properties of carbon nanotubes (CNTs) would open new avenues for addressing challenges to realize rapid and sensitive antimicrobial diagnostics and therapy for human pathogens. In this study, new CNTs' capabilities for photothermal (PT) antimicrobial nanotherapy were explored in vitro using Escherichia coli as a model bacterium.

[1]  Valery V Tuchin,et al.  Photoacoustic flow cytometry: principle and application for real-time detection of circulating single nanoparticles, pathogens, and contrast dyes in vivo. , 2007, Journal of biomedical optics.

[2]  B. Bauer,et al.  Length‐Dependent Uptake of DNA‐Wrapped Single‐Walled Carbon Nanotubes , 2007 .

[3]  Valery V Tuchin,et al.  In vivo photoacoustic flow cytometry for monitoring of circulating single cancer cells and contrast agents. , 2006, Optics letters.

[4]  David Tománek,et al.  Electronic and structural properties of multiwall carbon nanotubes , 1998 .

[5]  M. Prato,et al.  Translocation of bioactive peptides across cell membranes by carbon nanotubes. , 2004, Chemical communications.

[6]  M. Shim,et al.  Functionalization of Carbon Nanotubes for Biocompatibility and Biomolecular Recognition , 2002 .

[7]  G. Dresselhaus,et al.  Size Effects in Carbon Nanotubes , 1998 .

[8]  T. Ichihashi,et al.  Single-shell carbon nanotubes of 1-nm diameter , 1993, Nature.

[9]  Jaesung Lee,et al.  Evaluation by differential scanning calorimetry of the effect of acid, ethanol, and NaCl on Escherichia coli. , 2005, Journal of food protection.

[10]  V. Zharov,et al.  Photothermal imaging of nanoparticles and cells , 2005, IEEE Journal of Selected Topics in Quantum Electronics.

[11]  V. Zharov,et al.  Combination of viral biology and nanotechnology: new applications in nanomedicine. , 2006, Nanomedicine : nanotechnology, biology, and medicine.

[12]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[13]  Xiaohua Huang,et al.  Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. , 2006, Journal of the American Chemical Society.

[14]  W. D. de Heer,et al.  Carbon Nanotubes--the Route Toward Applications , 2002, Science.

[15]  P. Ajayan,et al.  Nanotubes in a flash--ignition and reconstruction. , 2002, Science.

[16]  Valery V. Tuchin,et al.  Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters , 2006 .

[17]  Vladimir P Zharov,et al.  Self-assembling nanoclusters in living systems: application for integrated photothermal nanodiagnostics and nanotherapy. , 2005, Nanomedicine : nanotechnology, biology, and medicine.

[18]  M. Prato,et al.  Biomedical applications of functionalised carbon nanotubes. , 2005, Chemical communications.

[19]  R.R. Anderson,et al.  Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation. , 1983, Science.

[20]  Jingqi Li,et al.  Thermal conductivity of multiwalled carbon nanotubes , 2002 .

[21]  V. Zharov Far-field photothermal microscopy beyond the diffraction limit. , 2003, Optics letters.

[22]  P. McEuen,et al.  Thermal transport measurements of individual multiwalled nanotubes. , 2001, Physical Review Letters.

[23]  D. P. O'Neal,et al.  Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. , 2004, Cancer letters.

[24]  V. Tuchin,et al.  Photothermal flow cytometry in vitro for detection and imaging of individual moving cells , 2007, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[25]  P. Schultz,et al.  Cover Picture: Expanding the Genetic Code (Angew. Chem. Int. Ed. 1/2005) , 2005 .

[26]  Enhanced Introduction of Gold Nanoparticles into Vital Acidothiobacillus ferrooxidans by Carbon Nanotube-based Microwave Electroporation , 2004 .

[27]  Vladimir P. Zharov,et al.  Microbubbles-overlapping mode for laser killing of cancer cells with absorbing nanoparticle clusters , 2005 .

[28]  R. Kinne,et al.  Ethanol Treatment of Hepatocellular Carcinoma: High Potentials of Low Concentrations , 2004, Cancer biology & therapy.

[29]  S. Bachilo,et al.  Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells. , 2004, Journal of the American Chemical Society.

[30]  Andrew S. Mount,et al.  RNA polymer translocation with single-walled carbon nanotubes , 2004 .

[31]  T. Ebbesen,et al.  Helical Crystallization of Proteins on Carbon Nanotubes: A First Step towards the Development of New Biosensors. , 1999, Angewandte Chemie.

[32]  H. Dai,et al.  Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Russell Deaton,et al.  In situ fluorescence microscopy visualization and characterization of nanometer-scale carbon nanotubes labeled with 1-pyrenebutanoic acid, succinimidyl ester , 2006 .

[34]  Vladimir P Zharov,et al.  Covalently linked Au nanoparticles to a viral vector: potential for combined photothermal and gene cancer therapy. , 2006, Nano letters.

[35]  Hongjie Dai,et al.  siRNA delivery into human T cells and primary cells with carbon-nanotube transporters. , 2007, Angewandte Chemie.

[36]  Xunbin Wei,et al.  Selective cell targeting with light-absorbing microparticles and nanoparticles. , 2003, Biophysical journal.

[37]  E. Wickstrom,et al.  Single-wall carbon nanotube nanobomb agents for killing breast cancer cells , 2005 .

[38]  Vladimir P Zharov,et al.  Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles. , 2006, Biophysical journal.

[39]  Thomas Kelly,et al.  Synergistic enhancement of selective nanophotothermolysis with gold nanoclusters: Potential for cancer therapy , 2005, Lasers in surgery and medicine.

[40]  Charles Joenathan,et al.  Laser-induced explosion of gold nanoparticles: potential role for nanophotothermolysis of cancer. , 2006, Nanomedicine.

[41]  H. Dai,et al.  Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into Mammalian cells. , 2004, Journal of the American Chemical Society.

[42]  M. Giersig,et al.  Multi-walled carbon nanotubes for plasmid delivery into Escherichia coli cells. , 2005, Lab on a chip.

[43]  P. Ajayan,et al.  Carbon nanotube filters , 2004, Nature materials.

[44]  Vladimir P. Zharov,et al.  Photothermal detection of local thermal effects during selective nanophotothermolysis , 2003 .

[45]  V. C. Moore,et al.  Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes , 2002, Science.

[46]  M. Dresselhaus,et al.  Physical properties of carbon nanotubes , 1998 .