On the irreversibility of Moore cellular automata over the ternary field and image application

Cellular automata have rich computational properties and provide many models in mathematical and physical processes. In this paper, one of the most commonly used neighborhood types of two dimensional (2D) cellular automata which is called the Moore neighborhood in two dimensional integer lattice is considered. We study the characterization of 2D linear cellular automata defined by the Moore neighborhood with periodic and null boundary conditions over ternary fields. Furthermore, we analyze some results of 2D cellular automata defined by the rule number 9840NB and finally also present applications to error correcting codes and image processing field.

[1]  John E. Renaud,et al.  KKT conditions satisfied using adaptive neighboring in hybrid cellular automata for topology optimization , 2009 .

[2]  Hasan Akin,et al.  The Transition Rules of 2D Linear Cellular Automata Over Ternary Field and Self-Replicating Patterns , 2015, Int. J. Bifurc. Chaos.

[3]  Hasan Akin,et al.  Self-Replicating Patterns in 2D Linear Cellular Automata , 2014, Int. J. Bifurc. Chaos.

[4]  Ángel Martín del Rey,et al.  A New Secret Sharing Scheme for Images Based on Additive 2-Dimensional Cellular Automata , 2005, IbPRIA.

[5]  H. Akın,et al.  Structure and Reversibility of 2-dimensional Hexagonal Cellular Automata , 2010 .

[6]  Hasan Akin,et al.  2D Cellular Automata with an Image Processing Application , 2014 .

[7]  Ferat Sahin,et al.  Edge detection with fuzzy cellular automata transition function optimized by PSO , 2015, Comput. Electr. Eng..

[8]  Pabitra Pal Choudhury,et al.  Matrix algebraic formulae concerning some exceptional rules of two-dimensional cellular automata , 2004, Inf. Sci..

[9]  Hasan Akin,et al.  Characterization of two-dimensional cellular automata over ternary fields , 2011, J. Frankl. Inst..

[10]  Gonzalo Álvarez,et al.  Graphic Cryptography with Pseudorandom Bit Generators and Cellular Automata , 2003, KES.

[11]  Selman Uguz,et al.  Reversibility Algorithms for 3-State Hexagonal Cellular Automata with periodic Boundaries , 2013, Int. J. Bifurc. Chaos.

[12]  Albert Y. Zomaya,et al.  Cellular automata computations and secret key cryptography , 2004, Parallel Comput..

[13]  Nei Y. Soma,et al.  On irreversibility of von Neumann additive cellular automata on grids , 2006, Discret. Appl. Math..

[14]  Ferat Sahin,et al.  Salt and pepper noise filtering with fuzzy-cellular automata , 2014, Comput. Electr. Eng..

[15]  Hasan Akin,et al.  Garden of eden configurations for 2-D cellular automata with rule 2460 N , 2010, Inf. Sci..

[16]  F. Sahin,et al.  Hybridized fuzzy cellular automata thresholding algorithm for edge detection optimized by PSO , 2013, 2013 High Capacity Optical Networks and Emerging/Enabling Technologies.

[17]  Irfan Siap,et al.  On cellular automata over Galois rings , 2007, Inf. Process. Lett..

[18]  G. A. Hedlund Endomorphisms and automorphisms of the shift dynamical system , 1969, Mathematical systems theory.

[19]  Ramón Alonso-Sanz,et al.  Reversible cellular automata with memory: two-dimensional patterns from a single site seed , 2003 .

[20]  Ángel Martín del Rey,et al.  The Use of Linear Hybrid Cellular Automata as Pseudo Random Bit Generators in Cryptography , 2004, Neural Parallel Sci. Comput..

[21]  Abdul Raouf Khan,et al.  Text compression using two-dimensional cellular automata , 1999 .

[22]  Parimal Pal Chaudhuri,et al.  Design of CAECC-Cellular Automata Based Error Correcting Code , 1994, IEEE Trans. Computers.

[23]  Hasan Akin,et al.  Structure and reversibility of 2D hexagonal cellular automata , 2011, Comput. Math. Appl..

[24]  Pabitra Pal Choudhury,et al.  Characterisation of a particular hybrid transformation of two-dimensional cellular automata , 1999 .

[25]  Subhasish Mitra,et al.  VLSI architecture of a cellular automata machine , 1997 .

[26]  Paul L. Rosin Image processing using 3-state cellular automata , 2010, Comput. Vis. Image Underst..

[27]  John von Neumann,et al.  Theory Of Self Reproducing Automata , 1967 .

[28]  Hasan Akin On the directional entropy of Z2-actions generated by additive cellular automata , 2005, Appl. Math. Comput..

[29]  Ferat Sahin,et al.  Uniform Cellular Automata Linear Rules for Edge Detection , 2013, 2013 IEEE International Conference on Systems, Man, and Cybernetics.

[30]  Hasan Akin,et al.  Three-state von Neumann cellular automata and pattern generation , 2015 .

[31]  Zhong Yi,et al.  On behavior of two-dimensional cellular automata with an exceptional rule , 2009, Inf. Sci..