Fully Functional Logic‐In‐Memory Operations Based on a Reconfigurable Finite‐State Machine Using a Single Memristor

[1]  Jong-Ho Lee,et al.  Schottky diode with excellent performance for large integration density of crossbar resistive memory , 2012 .

[2]  Farnood Merrikh-Bayat,et al.  Training and operation of an integrated neuromorphic network based on metal-oxide memristors , 2014, Nature.

[3]  Jong-Ho Lee,et al.  32 × 32 Crossbar Array Resistive Memory Composed of a Stacked Schottky Diode and Unipolar Resistive Memory , 2013 .

[4]  D. Jeong,et al.  Memristors for Energy‐Efficient New Computing Paradigms , 2016 .

[5]  T. Mikolajick,et al.  Exploiting Memristive BiFeO3 Bilayer Structures for Compact Sequential Logics , 2014 .

[6]  Anupam Chattopadhyay,et al.  Multistate Memristive Tantalum Oxide Devices for Ternary Arithmetic , 2016, Scientific Reports.

[7]  Dan Hammerstrom,et al.  Methodology and Design of a Massively Parallel Memristive Stateful IMPLY Logic-Based Reconfigurable Architecture , 2016, IEEE Transactions on Nanotechnology.

[8]  S. Menzel,et al.  Realization of Boolean Logic Functionality Using Redox‐Based Memristive Devices , 2015 .

[9]  D. Jeong,et al.  Comprehensive Writing Margin Analysis and its Application to Stacked one Diode‐One Memory Device for High‐Density Crossbar Resistance Switching Random Access Memory , 2016 .

[10]  Gregory S. Snider,et al.  ‘Memristive’ switches enable ‘stateful’ logic operations via material implication , 2010, Nature.

[11]  Jun Yeong Seok,et al.  Ionic bipolar resistive switching modes determined by the preceding unipolar resistive switching reset behavior in Pt/TiO2/Pt , 2013, Nanotechnology.

[12]  Jan Reineke,et al.  Ascertaining Uncertainty for Efficient Exact Cache Analysis , 2017, CAV.

[13]  Uri C. Weiser,et al.  MAGIC—Memristor-Aided Logic , 2014, IEEE Transactions on Circuits and Systems II: Express Briefs.

[14]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[15]  Uri C. Weiser,et al.  Memristor-Based Material Implication (IMPLY) Logic: Design Principles and Methodologies , 2014, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[16]  Shuang Gao,et al.  Implementation of Complete Boolean Logic Functions in Single Complementary Resistive Switch , 2015, Scientific Reports.

[17]  Catherine E. Graves,et al.  Low-Power, Self-Rectifying, and Forming-Free Memristor with an Asymmetric Programing Voltage for a High-Density Crossbar Application. , 2016, Nano letters.

[18]  Lifeng Liu,et al.  Reconfigurable Nonvolatile Logic Operations in Resistance Switching Crossbar Array for Large‐Scale Circuits , 2016, Advanced materials.

[19]  Sally A. McKee,et al.  Hitting the memory wall: implications of the obvious , 1995, CARN.

[20]  Brian D. Hoskins,et al.  Optimized stateful material implication logic for three-dimensional data manipulation , 2016, Nano Research.

[21]  C. Wright,et al.  Beyond von‐Neumann Computing with Nanoscale Phase‐Change Memory Devices , 2013 .

[22]  L. Chua Memristor-The missing circuit element , 1971 .

[23]  C. Hwang,et al.  The conical shape filament growth model in unipolar resistance switching of TiO2 thin film , 2009 .

[24]  Cheol Seong Hwang,et al.  Localized switching mechanism in resistive switching of atomic-layer-deposited TiO2 thin films , 2007 .

[25]  Nishil Talati,et al.  Logic Design Within Memristive Memories Using Memristor-Aided loGIC (MAGIC) , 2016, IEEE Transactions on Nanotechnology.

[26]  J Joshua Yang,et al.  Memristive devices for computing. , 2013, Nature nanotechnology.

[27]  U. Böttger,et al.  Beyond von Neumann—logic operations in passive crossbar arrays alongside memory operations , 2012, Nanotechnology.

[28]  D. Jeong,et al.  Nanofilamentary resistive switching in binary oxide system; a review on the present status and outlook , 2011, Nanotechnology.