Cratering on Asteroids

Impact craters are a ubiquitous feature of asteroid surfaces. On a local scale, small craters puncture the surface in a way similar to that observed on terrestrial planets and the Moon. At the opposite extreme, larger craters often approach the physical size of asteroids, thus globally affecting their shapes and surface properties. Crater measurements are a powerful investigation means. Crater spatial and size distributions inform us of fundamental processes, such as asteroid collisional history. A paucity of craters, sometimes observed, may be diagnostic of mechanisms of erasure that are unique on low-gravity asteroids. By-products of impacts, such as ridges, troughs, and blocks, inform us of the bulk structure. In this chapter we review the major properties of crater populations on asteroids visited by spacecraft. In doing so we provide key examples to illustrate how craters affect the overall shape and can be used to constrain asteroid surface ages, bulk properties, and impact-driven surface evolution.

[1]  Thomas C. Duxbury,et al.  Grooves on Phobos: Their distribution, morphology and possible origin , 1979 .

[2]  F. Scholten,et al.  Mass‐wasting features and processes in Vesta's south polar basin Rheasilvia , 2013 .

[3]  K. T. Ramesh,et al.  Multi-scale defect interactions in high-rate brittle material failure. Part I: Model formulation and application to ALON , 2016 .

[4]  K. Holsapple THE SCALING OF IMPACT PROCESSES IN PLANETARY SCIENCES , 1993 .

[5]  David J. Williams,et al.  The Geologically Recent Giant Impact Basins at Vesta’s South Pole , 2012, Science.

[6]  D. Wilhelms A World of Rock. (Book Reviews: To a Rocky Moon. A Geologist's History of Lunar Exploration.) , 1993 .

[7]  W. Hartmann Does crater “saturation equilibrium” occur in the solar system? , 1984 .

[8]  D. Komatitsch,et al.  Effects of ejecta accumulation on the crater population of asteroid 433 Eros , 2009 .

[9]  A. McEwen,et al.  The Geology of Gaspra , 1994 .

[10]  J. Richardson Cratering saturation and equilibrium: A new model looks at an old problem , 2009 .

[11]  Andrew F. Cheng,et al.  Small-Scale Topography of 433 Eros from Laser Altimetry and Imaging , 2000 .

[12]  Tucson,et al.  Small crater populations on Vesta , 2013, 1305.6679.

[13]  J. Veverka,et al.  Phobos, Deimos, and the Moon: size and distribution of crater ejecta blocks , 1986 .

[14]  F. Scholten,et al.  The geomorphology of (21) Lutetia: Results from the OSIRIS imaging system onboard ESA's Rosetta spacecraft , 2012 .

[15]  A. Cheng,et al.  Giant Craters on Mathilde , 1999 .

[16]  G. Neukum,et al.  Cratering on Gaspra , 1993 .

[17]  R. Sullivan,et al.  Mechanical and geological effects of impact cratering on Ida , 1996 .

[18]  Clark R. Chapman,et al.  NEAR Encounter with Asteroid 253 Mathilde: Overview , 1999 .

[19]  Kevin R. Housen,et al.  Impact cratering on porous asteroids , 2003 .

[20]  C. Fassett,et al.  Crater degradation on the lunar maria: Topographic diffusion and the rate of erosion on the Moon , 2014 .

[21]  D. Britt,et al.  Asteroid Density, Porosity, and Structure , 2002 .

[22]  Richard Greenberg,et al.  Impact-Induced Seismic Activity on Asteroid 433 Eros: A Surface Modification Process , 2004, Science.

[23]  David Allen Crawford,et al.  Application of Adaptive Mesh Refinement to the Simulation of Impacts in Complex Geometries and Heterogeneous Materials , 2003 .

[24]  A. Nakamura,et al.  Cratering Experiments into Curved Surfaces and Their Implication for Craters on Small Satellites , 1993 .

[25]  Veverka,et al.  Estimating the mass of asteroid 433 eros during the NEAR spacecraft flyby , 1999, Science.

[26]  A. Fujiwara Stickney-forming impact on phobos: crater shape and induced stress distribution , 1991 .

[27]  P. Michel,et al.  Thermal fatigue as the origin of regolith on small asteroids , 2014, Nature.

[28]  Richard J. Pike,et al.  Control of crater morphology by gravity and target type - Mars, earth, moon , 1980 .

[29]  A. Nakamura,et al.  Cratering Experiments on the Self Armoring of Coarse-Grained Granular Targets , 2012, 1206.5564.

[30]  C. Russell,et al.  The chronostratigraphy of protoplanet Vesta , 2014 .

[31]  S. W. Asmar,et al.  Asteroid 21 Lutetia: Low Mass, High Density , 2011, Science.

[32]  Veverka,et al.  Imaging of asteroid 433 eros during NEAR's flyby reconnaissance , 1999, Science.

[33]  A. McEwen,et al.  Geology of 243 Ida , 1996 .

[34]  David P. O'Brien,et al.  Craters on asteroids : Reconciling diverse impact records with a common impacting population , 2006 .

[35]  P. Thomas,et al.  Impact History of Eros: Craters and Boulders , 2002 .

[36]  E. Scott,et al.  Constraints on the role of impact heating and melting in asteroids , 1997 .

[37]  Geological map and stratigraphy of asteroid 21 Lutetia , 2012 .

[38]  Richard Greenberg,et al.  Defining the Flora Family: Orbital properties, reflectance properties and age , 2014, 1404.6707.

[39]  R. Jaumann,et al.  The Violent Collisional History of Asteroid 4 Vesta , 2012, Science.

[40]  C. Russell,et al.  Constraining the cratering chronology of Vesta , 2014, 1407.3303.

[41]  Cesare Barbieri,et al.  Identification and physical properties of craters on Asteroid (2867) Steins , 2012 .

[42]  J. Veverka,et al.  Surface Expressions of Structural Features on Eros , 2002 .

[43]  D. Brownlee,et al.  Target Porosity Effects in Impact Cratering and Collisional Disruption , 1993 .

[44]  David P. O'Brien,et al.  Itokawa's cratering record as observed by Hayabusa: Implications for its age and collisional history , 2009 .

[45]  A. Nakamura,et al.  Impact process of boulders on the surface of asteroid 25143 Itokawa—fragments from collisional disruption , 2008 .

[46]  N. Thomas,et al.  The influence of recent major crater impacts on the surrounding surfaces of (21) Lutetia , 2013 .

[47]  C. Chapman Asteroids as meteorite parent-bodies: the astronomical perspective , 1976 .

[48]  H. Melosh,et al.  Distributions of boulders ejected from lunar craters , 2010 .

[49]  T N Titus,et al.  Dawn at Vesta: Testing the Protoplanetary Paradigm , 2012, Science.

[50]  Alberto Cellino,et al.  Asteroid families classification: Exploiting very large datasets , 2013, 1312.7702.

[51]  C. Russell,et al.  High-velocity collisions from the lunar cataclysm recorded in asteroidal meteorites , 2013 .

[52]  N. Thomas,et al.  Lutetia's lineaments , 2014 .

[53]  D. Rubincam,et al.  Radiative Spin-up and Spin-down of Small Asteroids , 2000 .

[54]  L. Soderblom A model for small‐impact erosion applied to the lunar surface , 1970 .

[55]  Derek C. Richardson,et al.  Astronomy Astrophysics Letter to the Editor Collision and gravitational reaccumulation: Possible formation mechanism of the asteroid Itokawa , 2013 .

[56]  A. Nakamura,et al.  Size-frequency statistics of boulders on global surface of asteroid 25143 Itokawa , 2008 .

[57]  J. Veverka,et al.  Collisional History of Gaspra , 1994 .

[58]  D. Gault,et al.  Seismic effects from major basin formations on the moon and mercury , 1975 .

[59]  P. Thomas Surface features of Phobos and Deimos , 1979 .

[60]  H. Keller,et al.  The cratering history of asteroid (2867) Steins , 2010, 1003.5655.

[61]  R. Sullivan,et al.  Regolith transport in craters on Eros , 2004 .

[62]  The cratering history of asteroid ( 21 ) , 2012 .

[63]  Asymmetric craters on Vesta , 2013 .

[64]  J. Vincent,et al.  Scheila’s scar: Direct evidence of impact surface alteration on a primitive asteroid , 2013, 1310.8515.

[65]  M. Cintala,et al.  Characteristics of the cratering process on small satellites and asteroids , 1978 .

[66]  David E. Smith,et al.  Gravity field expansion in ellipsoidal harmonic and polyhedral internal representations applied to Vesta , 2014 .

[67]  W. Bottke,et al.  The onset of the lunar cataclysm as recorded in its ancient crater populations , 2012 .

[68]  P. Schultz,et al.  The Deep Impact oblique impact cratering experiment , 2007 .

[69]  K. Holsapple,et al.  Crater ejecta scaling laws - Fundamental forms based on dimensional analysis , 1983 .

[70]  M. Massironi,et al.  Physical properties of craters on asteroid (21)Lutetia , 2011 .

[71]  K. Holsapple,et al.  A crater and its ejecta: An interpretation of Deep Impact , 2007 .

[72]  M. Malin,et al.  Mathilde: Size, Shape, and Geology , 1999 .

[73]  C. Chapman,et al.  Cratering of planetary satellites. , 1986 .

[74]  C. Chapman Asteroid collisions, craters, regoliths, and lifetimes , 1978 .

[75]  O. Barnouin,et al.  Block distributions on Itokawa , 2014 .

[76]  Donald E. Gault,et al.  Saturation and Equilibrium Conditions for Impact Cratering on the Lunar Surface: Criteria and Implications , 1970 .

[77]  Collisions and Gravitational Reaccumulation : Forming Asteroid Families and Satellites , .

[78]  Gerhard Neukum,et al.  Cratering on Ida , 1996 .

[79]  Dlr,et al.  The cratering history of asteroid (21) Lutetia , 2011, 1111.3628.

[80]  C. Russell,et al.  Asymmetric craters on Vesta: Impact on sloping surfaces , 2014 .

[81]  R. Jaumann,et al.  Large‐scale troughs on Vesta: A signature of planetary tectonics , 2012 .

[82]  J. University,et al.  The effects of the target material properties and layering on the crater chronology: The case of Raditladi and Rachmaninoff basins on Mercury , 2011, 1105.5272.

[83]  Elbert A King To a rocky moon: A geologist's history of lunar exploration: Don E. Wilhelms. University of Arizona Press, 1993, xx + 477p., US $29.95 (ISBN 0-8165-1065-2) , 1993 .

[84]  Hajime Yano,et al.  Regolith Migration and Sorting on Asteroid Itokawa , 2007, Science.

[85]  H. Melosh,et al.  Formation of Equatorial Graben Following the Rheasilvia Impact on Asteroid 4 Vesta , 2013 .

[86]  M. Nafi Toksöz,et al.  Structure of the Moon , 1974 .

[87]  P. Schultz,et al.  Subsurface failure in spherical bodies: A formation scenario for linear troughs on Vesta’s surface , 2015 .

[88]  J. Head,et al.  Collisional and Dynamical History of Ida , 1996 .

[89]  R. Jaumann,et al.  Vesta’s Shape and Morphology , 2012, Science.

[90]  Harold F. Levison,et al.  Asteroids Were Born Big , 2009, 0907.2512.

[91]  David P. O'Brien,et al.  The global effects of impact-induced seismic activity on fractured asteroid surface morphology , 2005 .

[92]  D. Bogard K–Ar ages of meteorites: Clues to parent-body thermal histories , 2011 .

[93]  Clark R. Chapman,et al.  The variability of crater identification among expert and community crater analysts , 2014, 1404.1334.

[94]  A. Nakamura,et al.  The shape distribution of boulders on Asteroid 25143 Itokawa: Comparison with fragments from impact experiments , 2010 .

[95]  G. K. Gilbert The Moon's Face: A Study Of The Origin Of Its Features , 2017 .

[96]  R. Greeley,et al.  Discovery of Grooves on Gaspra , 1994 .

[97]  Derek C. Richardson,et al.  Size-frequency distributions of fragments from SPH/N-body simulations of asteroid impacts: Comparison with observed asteroid families , 2007 .

[98]  Robert Jedicke,et al.  Linking the collisional history of the main asteroid belt to its dynamical excitation and depletion , 2005 .

[99]  Alessandro Frigeri,et al.  Geologic Mapping of Vesta , 2014 .

[100]  H. Melosh,et al.  The Stickney Impact of Phobos: A Dynamical Model , 1990 .

[101]  H. Keller,et al.  Boulders on Lutetia , 2012 .

[102]  Daniel J. Scheeres,et al.  Characterizing and navigating small bodies with imaging data , 2006 .

[103]  S. Titley Seismic energy as an agent of morphologic modification on the moon , 1966 .

[104]  C. Russell,et al.  The cratering record, chronology and surface ages of (4) Vesta in comparison to smaller asteroids and the ages of HED meteorites , 2014 .

[105]  V. Oberbeck The Role of Ballistic Erosion and Sedimentation in Lunar Stratigraphy , 1975 .

[106]  M. E. Kipp,et al.  Continuum modelling of explosive fracture in oil shale , 1980 .

[107]  Erik Asphaug,et al.  Growth and Evolution of Asteroids , 2009 .

[108]  P. Thomas,et al.  Cratering on Mathilde , 1999 .

[109]  R. Greeley,et al.  Ejecta Blocks on 243 Ida and on Other Asteroids , 1996 .

[110]  R. Gaskell,et al.  Small-scale topography of 25143 Itokawa from the Hayabusa laser altimeter , 2008 .

[111]  P. Thomas,et al.  Seismic resurfacing by a single impact on the asteroid 433 Eros , 2005, Nature.

[112]  N. Izenberg,et al.  Imaging of Small-Scale Features on 433 Eros from NEAR: Evidence for a Complex Regolith , 2001, Science.

[113]  Takahide Mizuno,et al.  Mass and Local Topography Measurements of Itokawa by Hayabusa , 2006, Science.

[114]  Clark R. Chapman,et al.  S-Type Asteroids, Ordinary Chondrites, and Space Weathering: The Evidence from Galileo's Fly-bys of Gaspra and Ida , 1996 .

[115]  Eros' Rahe Dorsum: Implications for internal structure , 2008 .

[116]  H. Melosh,et al.  Impact Craters on Asteroids: Does Gravity or Strength Control Their Size? , 1996 .

[117]  Kentaro Uesugi,et al.  Three-Dimensional Structure of Hayabusa Samples: Origin and Evolution of Itokawa Regolith , 2011, Science.

[118]  S. Murchie,et al.  Shoemaker crater as the source of most ejecta blocks on the asteroid 433 Eros , 2001, Nature.

[119]  R. Grieve Impact cratering , 1981, Nature.

[120]  R. J. Pike Apparent depth/apparent diameter relation for lunar craters , 1977 .

[121]  Richard P. Binzel,et al.  Impact excavation on Asteroid 4 Vesta: Hubble Space Telescope results , 1997 .

[122]  C. Russell,et al.  Crater depth-to-diameter distribution and surface properties of (4) vesta , 2014 .

[123]  Farquhar,et al.  Estimating the mass of asteroid 253 mathilde from tracking data during the NEAR flyby , 1997, Science.

[124]  David E. Smith,et al.  Laser Altimetry of Small-Scale Features on 433 Eros from NEAR-Shoemaker , 2001, Science.

[125]  S. Murchie,et al.  The geology of 433 Eros , 2002 .

[126]  Derek C. Richardson,et al.  Fragment properties at the catastrophic disruption threshold: The effect of the parent body’s internal structure , 2009, 0911.3937.

[127]  A. Woronow Crater saturation and equilibrium - A Monte Carlo simulation. [lunar distribution , 1976 .

[128]  J. Kawaguchi,et al.  The Rubble-Pile Asteroid Itokawa as Observed by Hayabusa , 2006, Science.

[129]  L. Prockter,et al.  433 Eros lineaments: Global mapping and analysis , 2008 .

[130]  D. H. Scott,et al.  Multiringed basins - Illustrated by Orientale and associated features. [geologic mapping and photographs of lunar ejecta] , 1974 .

[131]  D. Gault,et al.  Impact cratering mechanics and structures , 1968 .

[132]  A. Nakamura,et al.  A survey of possible impact structures on 25143 Itokawa , 2009 .