Microscopic theory of nuclear fission: a review

This article reviews how nuclear fission is described within nuclear density functional theory. A distinction should be made between spontaneous fission, where half-lives are the main observables and quantum tunnelling the essential concept, and induced fission, where the focus is on fragment properties and explicitly time-dependent approaches are often invoked. Overall, the cornerstone of the density functional theory approach to fission is the energy density functional formalism. The basic tenets of this method, including some well-known tools such as the Hartree-Fock-Bogoliubov (HFB) theory, effective two-body nuclear potentials such as the Skyrme and Gogny force, finite-temperature extensions and beyond mean-field corrections, are presented succinctly. The energy density functional approach is often combined with the hypothesis that the time-scale of the large amplitude collective motion driving the system to fission is slow compared to typical time-scales of nucleons inside the nucleus. In practice, this hypothesis of adiabaticity is implemented by introducing (a few) collective variables and mapping out the many-body Schrödinger equation into a collective Schrödinger-like equation for the nuclear wave-packet. The region of the collective space where the system transitions from one nucleus to two (or more) fragments defines what are called the scission configurations. The inertia tensor that enters the kinetic energy term of the collective Schrödinger-like equation is one of the most essential ingredients of the theory, since it includes the response of the system to small changes in the collective variables. For this reason, the two main approximations used to compute this inertia tensor, the adiabatic time-dependent HFB and the generator coordinate method, are presented in detail, both in their general formulation and in their most common approximations. The collective inertia tensor enters also the Wentzel-Kramers-Brillouin (WKB) formula used to extract spontaneous fission half-lives from multi-dimensional quantum tunnelling probabilities (For the sake of completeness, other approaches to tunnelling based on functional integrals are also briefly discussed, although there are very few applications.) It is also an important component of some of the time-dependent methods that have been used in fission studies. Concerning the latter, both the semi-classical approaches to time-dependent nuclear dynamics and more microscopic theories involving explicit quantum-many-body methods are presented. One of the hallmarks of the microscopic theory of fission is the tremendous amount of computing needed for practical applications. In particular, the successful implementation of the theories presented in this article requires a very precise numerical resolution of the HFB equations for large values of the collective variables. This aspect is often overlooked, and several sections are devoted to discussing the resolution of the HFB equations, especially in the context of very deformed nuclear shapes. In particular, the numerical precision and iterative methods employed to obtain the HFB solution are documented in detail. Finally, a selection of the most recent and representative results obtained for both spontaneous and induced fission is presented, with the goal of emphasizing the coherence of the microscopic approaches employed. Although impressive progress has been achieved over the last two decades to understand fission microscopically, much work remains to be done. Several possible lines of research are outlined in the conclusion.

[1]  T. Otsuka,et al.  Mean field with tensor force and shell structure of exotic nuclei. , 2006, Physical review letters.

[2]  Shan-Gui Zhou,et al.  Multidimensionally-constrained relativistic mean-field models and potential-energy surfaces of actinide nuclei , 2013, 1304.2513.

[3]  Weiss,et al.  Application of the imaginary time step method to the solution of the static Hartree-Fock problem , 1980 .

[4]  W. Myers,et al.  Average nuclear properties , 1969 .

[5]  P. Ring,et al.  Relativistic nuclear energy density functionals: Mean-field and beyond , 2011, 1102.4193.

[6]  M. V. Stoitsov,et al.  One-quasiparticle States in the Nuclear Energy Density Functional Theory , 2009, 0910.2164.

[7]  Reinhard,et al.  Lipkin-Nogami pairing scheme in self-consistent nuclear structure calculations. , 1996, Physical review. C, Nuclear physics.

[8]  P. Ring,et al.  Application of the finite element method in self-consistent relativistic mean field calculations , 1996 .

[9]  D. Gogny,et al.  Nuclear scission and quantum localization. , 2011, Physical review letters.

[10]  L. Robledo,et al.  FISSION PROPERTIES OF ODD-A NUCLEI IN A MEAN FIELD FRAMEWORK , 2009 .

[11]  W. D. Myers,et al.  NUCLEAR MASSES AND DEFORMATIONS , 1966 .

[12]  David Regnier,et al.  Numerical search of discontinuities in self-consistent potential energy surfaces , 2011, Comput. Phys. Commun..

[13]  M. Brack,et al.  Collective pairing Hamiltonian in the GCM approximation , 1985 .

[14]  W. Greiner,et al.  Potential energy surfaces of superheavy nuclei , 1998, nucl-th/9902058.

[15]  S. Levit,et al.  Barrier penetration and spontaneous fission in the time-dependent mean-field approximation , 1980 .

[16]  W. Nazarewicz,et al.  Microscopic modeling of mass and charge distributions in the spontaneous fission of 240Pu , 2015, 1510.08003.

[17]  D. Rowe,et al.  A study of collective paths in the time-dependent hartree-fock approach to large amplitude collective nuclear motion , 1981 .

[18]  D. Gogny,et al.  Microscopic Theory of Fission , 2008 .

[19]  S. Levit Time-dependent mean-field approximation for nuclear dynamical problems , 1980 .

[20]  Jacques Treiner,et al.  Hartree-Fock-Bogolyubov description of nuclei near the neutron-drip line , 1984 .

[21]  E. M. Lifshitz,et al.  Quantum mechanics: Non-relativistic theory, , 1959 .

[22]  P. Quentin,et al.  Mass parameters in the adiabatic time-dependent Hartree-Fock approximation. I. Theoretical aspects; the case of a single collective variable , 1980 .

[23]  Garching,et al.  r-PROCESS NUCLEOSYNTHESIS IN DYNAMICALLY EJECTED MATTER OF NEUTRON STAR MERGERS , 2011, 1107.0899.

[24]  A. Gózdz An extended gaussian overlap approximation in the generator coordinate method , 1985 .

[25]  P. Quentin,et al.  Mass parameters in the adiabatic time-dependent Hartree-Fock approximation. II. Results for the isoscalar quadrupole mode , 1980 .

[26]  Shan-Gui Zhou,et al.  Potential energy surfaces of actinide nuclei from a multidimensional constrained covariant density functional theory: Barrier heights and saddle point shapes , 2011, 1110.6769.

[27]  L. Robledo,et al.  Microscopic description of fission in neutron-rich plutonium isotopes with the Gogny-D1M energy density functional , 2014, The European Physical Journal A.

[28]  D. Brink,et al.  Hartree-Fock Calculations with Skyrme's Interaction. I. Spherical Nuclei , 1972 .

[29]  M. K. Pal,et al.  Evaluation of the optimal path in ATDHF theory , 1982 .

[30]  Paul-Gerhard Reinhard,et al.  The TDHF code Sky3D , 2013, Comput. Phys. Commun..

[31]  F. Nogueira,et al.  A primer in density functional theory , 2003 .

[32]  M. Bender,et al.  Microscopic study of 240pu:: mean-field and beyond , 2004, nucl-th/0409007.

[33]  Niels Bohr,et al.  The Mechanism of nuclear fission , 1939 .

[34]  H. Krappe,et al.  Theory of Nuclear Fission , 2012 .

[35]  D. Gogny,et al.  Microscopic and nonadiabatic Schrödinger equation derived from the generator coordinate method based on zero- and two-quasiparticle states , 2011, 1106.2961.

[36]  J. Yao,et al.  Efficient method for computing the Thouless-Valatin inertia parameters , 2012, 1209.6075.

[37]  M. Kowal,et al.  Secondary fission barriers in even-even actinide nuclei , 2012 .

[38]  Stefan M. Wild,et al.  Axially deformed solution of the Skyrme-Hartree-Fock-Bogoliubov equations using the transformed harmonic oscillator basis (II) hfbtho v2.00d: A new version of the program , 2012, Comput. Phys. Commun..

[39]  K. Kratz,et al.  Nuclear properties for astrophysical and radioactive-ion-beam applications (II) , 1997, Atomic Data and Nuclear Data Tables.

[40]  S. Shectman,et al.  NEUTRON-CAPTURE NUCLEOSYNTHESIS IN THE FIRST STARS , 2014, 1402.4144.

[41]  P. Ring,et al.  The fission barriers in Actinides and superheavy nuclei in covariant density functional theory , 2009, 0909.1233.

[42]  J. Niez,et al.  Microscopic transport theory of nuclear processes , 2009, 0911.1674.

[43]  J. Messud Generalization of internal density-functional theory and Kohn-Sham scheme to multicomponent self-bound systems, and link with traditional density-functional theory , 2011, 1107.4579.

[44]  J. Nemeth,et al.  Hartree-Fock and Thomas-Fermi self-consistent calculations of the 144Nd nucleus at finite temperature and angular momentum , 1985 .

[45]  A. Baran,et al.  A dynamic analysis of spontaneous-fission half-lives , 1981 .

[46]  Multidimensional fission model with a complex absorbing potential , 2015, 1502.04418.

[47]  S. G. Rohoziński Parametrization of nonaxial deformations in rotational nuclei , 1997 .

[48]  B. Grammaticos,et al.  Triaxial Hartree-Fock-Bogolyubov calculations with D-1 effective interaction , 1983 .

[49]  Peter Ring,et al.  On the decomposition of the single-particle density in a time-even and a time-odd part , 1977 .

[50]  Philippe Chomaz,et al.  Pairing vibrations study with the time-dependent Hartree-Fock-Bogoliubov theory , 2008, 0808.3507.

[51]  S. Hilaire,et al.  Towards a new Gogny force parameterization: Impact of the neutron matter equation of state , 2008 .

[52]  O. Hahn,et al.  Über die Entstehung von Radiumisotopen aus Uran durch Bestrahlen mit schnellen und verlangsamten Neutronen , 1938, Naturwissenschaften.

[53]  E. Gross,et al.  Time-dependent density functional theory. , 2004, Annual review of physical chemistry.

[54]  M. Brack,et al.  Selfconsistent calculations of highly excited nuclei , 1974 .

[55]  R. Dreizler,et al.  Density Functional Theory: An Approach to the Quantum Many-Body Problem , 1991 .

[56]  Matthias Brack,et al.  Funny Hills: The Shell-Correction Approach to Nuclear Shell Effects and Its Applications to the Fission Process , 1972 .

[57]  H. Rose,et al.  A new kind of natural radioactivity , 1984, Nature.

[58]  W. Younes,et al.  Gaussian matrix elements in a cylindrical harmonic oscillator basis , 2009, Comput. Phys. Commun..

[59]  Takaharu Otsuka,et al.  Three-dimensional TDHF calculations for reactions of unstable nuclei , 1997 .

[60]  Michael McNeil Forbes,et al.  Broyden's Method in Nuclear Structure Calculations , 2008, 0805.4446.

[61]  L. Robledo,et al.  Fission barriers and probabilities of spontaneous fission for elements with Z ≥ 100 , 2015, 1503.01608.

[62]  J. Berger,et al.  Mass and kinetic energy distributions of fission fragments using the time dependent generator coordinate method , 2004 .

[63]  Peter Ring,et al.  Computer program for the time-evolution of a nuclear system in relativistic mean-field theory , 1995 .

[64]  P. Möller,et al.  Brownian shape motion on five-dimensional potential-energy surfaces:nuclear fission-fragment mass distributions. , 2011, Physical review letters.

[65]  Stefan M. Wild,et al.  Nuclear energy density optimization: Large deformations , 2011, 1111.4344.

[66]  A. Faessler,et al.  Hartree-Fock-Bogoliubov theory with spin and number projection before the variation: An application to 20Ne and 22Ne , 1984 .

[67]  W. Poeschl B-spline finite elements and their efficiency in solving relativistic mean field equations , 1998 .

[68]  J. Toivanen,et al.  Continuity equation and local gauge invariance for the (NLO)-L-3 nuclear energy density functionals , 2011, 1110.3027.

[69]  Daniel de Florian,et al.  Phenomenology of forward hadrons in deep inelastic scattering: Fracture functions and its Q 2 evolution , 1997 .

[70]  Sisir Roy,et al.  UNSHARP SPIN-1/2 OBSERVABLES AND CHSH INEQUALITIES* , 1995 .

[71]  M. Gaudin Une démonstration simplifiée du théorème de wick en mécanique statistique , 1960 .

[72]  D. Thouless Stability conditions and nuclear rotations in the Hartree-Fock theory , 1960 .

[73]  J. Dobaczewski,et al.  Local density approximation for proton-neutron pairing correlations: Formalism , 2004 .

[74]  The Skyrme interaction in finite nuclei and nuclear matter , 2006, nucl-th/0607002.

[75]  I. Ragnarsson,et al.  Fission barriers and the inclusion of axial asymmetry , 1972 .

[76]  M. Bender,et al.  Numerical accuracy of mean-field calculations in coordinate space , 2015, 1509.00252.

[77]  J. Negele Microscopic theory of fission dynamics , 1989 .

[78]  T. Duguet The Nuclear Energy Density Functional Formalism , 2013, 1309.0440.

[79]  J. Dobaczewski,et al.  Solution of the Skyrme–Hartree–Fock–Bogolyubov equations in the Cartesian deformed harmonic-oscillator basis. (IV) HFODD (v2.08i): a new version of the program , 2004 .

[80]  N. Bohr Neutron Capture and Nuclear Constitution , 1936, Nature.

[81]  T. Lesinski,et al.  Tensor part of the Skyrme energy density functional. II. Deformation properties of magic and semi-magic nuclei , 2009, 0909.3782.

[82]  P. Möller,et al.  Spontaneous-fission half-lives for even nuclei with Z>92 , 1976 .

[83]  J. Berger,et al.  A self-consistent microscopic approach to the 12C+12C reaction at low energy , 1980 .

[84]  D. Lacroix,et al.  Collective aspects deduced from time-dependent microscopic mean-field with pairing: Application to the fission process , 2015, 1505.05647.

[85]  J. Berger,et al.  Superheavy, hyperheavy and bubble nuclei , 2001 .

[86]  E. G. Ryabov,et al.  Four-dimensional Langevin dynamics of heavy-ion-induced fission , 2012 .

[87]  G. Münzenberg,et al.  The discovery of the heaviest elements , 2000 .

[88]  J. Nix Further studies in the liquid-drop theory on nuclear fission , 1969 .

[89]  L. Robledo,et al.  Self-consistent calculations of fission barriers in the Fm region , 2002, nucl-th/0203057.

[90]  S. Koonin,et al.  Dynamics of induced fission , 1978 .

[91]  Aaron Knoll,et al.  Visualizing Nuclear Scission through a Multifield Extension of Topological Analysis , 2012, IEEE Transactions on Visualization and Computer Graphics.

[92]  Bertsch,et al.  Pairing effects in nuclear collective motion: Generator coordinate method. , 1991, Physical review. C, Nuclear physics.

[93]  J. Skalski Nuclear fission with mean-field instantons , 2007, 0712.3030.

[94]  M. Girod,et al.  Mass parameters for large amplitude collective motion: A perturbative microscopic approach , 1999 .

[95]  N. Schunck,et al.  Density Functional Theory Approach to Nuclear Fission , 2012, 1212.3356.

[96]  F. Moreau,et al.  A method for calculating adiabatic mass parameters: Application to isoscalar quadrupole modes in light nuclei , 1976 .

[97]  A. S. Umar,et al.  Basis-Spline collocation method for the lattice solution of boundary value problems , 1991 .

[98]  D. Aldama,et al.  Handbook of Nuclear Data for Safeguards: Database Extensions, August 2008 , 2008 .

[99]  S. Goriely,et al.  Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas. V. Extension to fission barriers , 2005 .

[100]  Markus Kortelainen,et al.  Local nuclear energy density functional at next-to-next-to-next-to-leading order , 2008 .

[101]  R. J. Furnstahl,et al.  Toward ab initio density functional theory for nuclei , 2009, 0906.1463.

[102]  M. K. Pal,et al.  Analytical proof of the non-uniqueness of the ATDHF path , 1981 .

[103]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[104]  P. Bonche,et al.  Solution of the Skyrme HF+BCS equation on a 3D mesh , 2005, Comput. Phys. Commun..

[105]  E. Gross,et al.  Density-Functional Theory for Time-Dependent Systems , 1984 .

[106]  M. W. Herman,et al.  EMPIRE: Nuclear Reaction Model Code System for Data Evaluation , 2007 .

[107]  J. Dobaczewski,et al.  Solution of the Skyrme-Hartree-Fock-Bogolyubov equations in the Cartesian deformed harmonic-oscillator basis. (V) HFODD(v2.08k) , 2005, Comput. Phys. Commun..

[108]  N. Schunck,et al.  Continuum and symmetry-conserving effects in drip-line nuclei using finite-range forces , 2007, 0710.0880.

[109]  Shan-Gui Zhou,et al.  Multidimensionally constrained relativistic mean-field study of triple-humped barriers in actinides , 2014, 1404.5466.

[110]  Michael McNeil Forbes,et al.  Use of the Discrete Variable Representation Basis in Nuclear Physics , 2013, 1301.7354.

[111]  Helmut Eschrig,et al.  The fundamentals of density functional theory , 1996 .

[112]  J. K. Hwang,et al.  Observation of 10 Be Emission in the Cold Ternary Spontaneous Fission of 252 Cf , 1998 .

[113]  P. Quentin Skyrme's interaction in the asymptotic basis , 1972 .

[114]  T. Skyrme The effective nuclear potential , 1958 .

[115]  N. Schunck,et al.  Description of induced nuclear fission with Skyrme energy functionals: Static potential energy surfaces and fission fragment properties , 2013, 1311.2616.

[116]  Andrzej Staszczak,et al.  Solution of the Skyrme-Hartree-Fock-Bogolyubov equations in the Cartesian deformed harmonic-oscillator basis.: (VII) hfodd (v2.49t): A new version of the program , 2012, Comput. Phys. Commun..

[117]  Intrinsic-density functionals , 2006, nucl-th/0610043.

[118]  L. M. Robledo,et al.  Thermal shape fluctuation effects in the description of hot nuclei , 2003, nucl-th/0308044.

[119]  M. V. Stoitsov,et al.  Axially deformed solution of the Skyrme-Hartree-Fock-Bogolyubov equations using the transformed harmonic oscillator basis. The program HFBTHO (v1.66p) , 2005, Comput. Phys. Commun..

[120]  Martin,et al.  Behavior of shell effects with the excitation energy in atomic nuclei , 2000, Physical review letters.

[121]  I. Ragnarsson,et al.  Shapes and shells in nuclear structure , 1995 .

[122]  N. Schunck Microscopic description of induced fission , 2013, 1302.5718.

[123]  A. Messiah Quantum Mechanics , 1961 .

[124]  S. Coleman,et al.  Quantum Tunneling and Negative Eigenvalues , 1988 .

[125]  R. Chasman Density-dependent delta interactions and actinide pairing matrix elements , 1976 .

[126]  N. Hinohara Collective inertia of the Nambu-Goldstone mode from linear response theory , 2015, 1507.00045.

[127]  Peter Ring,et al.  Relativistic mean field theory in finite nuclei , 1996 .

[128]  G. Bertsch,et al.  Application of the gradient method to Hartree-Fock-Bogoliubov theory , 2011, 1104.5453.

[129]  S. Pal,et al.  Role of shape dependence of dissipation on nuclear fission , 2010 .

[130]  P. Quentin,et al.  Parity restoration in the highly truncated diagonalization approach: Application to the outer fission barrier of240Pu , 2012, 1210.0454.

[131]  F. Villars,et al.  Collective Energies from Momentum– and Angular Momentum–Projected Determinantal Wavefunctions , 1971 .

[132]  G. Martínez-Pinedo,et al.  Nuclear structure and astrophysics , 2007 .

[133]  V. Strutinsky,et al.  Symmetrical shapes of equilibrium for a liquid drop model , 1963 .

[134]  W. Greiner,et al.  Odd nuclei and single-particle spectra in the relativistic mean-field model , 1998 .

[135]  P. Schuck,et al.  Effective density-dependent pairing forces in the T=1 and T=0 channels , 1999, nucl-th/9909026.

[136]  J. Dobaczewski,et al.  Lipkin translational-symmetry restoration in the mean-field and energy-density-functional methods , 2009, 0906.4763.

[137]  S. Goriely,et al.  First Gogny-Hartree-Fock-Bogoliubov nuclear mass model. , 2009, Physical review letters.

[138]  Paul-Gerhard Reinhard,et al.  A comparative study of Hartree-Fock iteration techniques , 1982 .

[139]  Tum,et al.  Comprehensive nucleosynthesis analysis for ejecta of compact binary mergers , 2014, 1406.2687.

[140]  S. Stringari,et al.  Temperature dependence of nuclear surface properties , 1983 .

[141]  F. Grümmer,et al.  Three-dimensional nuclear dynamics in the quantized ATDHF approach , 1983 .

[142]  T. Une,et al.  Local Gaussian Approximation in the Generator Coordinate Method , 1975 .

[143]  W. Nazarewicz,et al.  Odd-even mass differences from self-consistent mean field theory , 2008, 0812.0747.

[144]  M. Huyse,et al.  Colloquium: Beta-delayed fission of atomic nuclei , 2013 .

[145]  V. E. Oberacker,et al.  Coordinate space Hartree-Fock-Bogoliubov calculations for the zirconium isotope chain up to the two-neutron drip line , 2005 .

[146]  M. V. Stoitsov,et al.  New discrete basis for nuclear structure studies , 1998 .

[147]  S. Åberg,et al.  Heavy-element fission barriers , 2009 .

[148]  M. Warda,et al.  Fission half-lives of superheavy nuclei in a microscopic approach , 2012, 1204.5867.

[149]  P.-G. Reinhard,et al.  Fission barriers and asymmetric ground states in the relativistic mean-field theory , 1995 .

[150]  W. Nazarewicz,et al.  Third minima in thorium and uranium isotopes in a self-consistent theory , 2013, 1302.1165.

[151]  Stefan Flörchinger Many-Body Physics , 2010 .

[152]  M. Giannoni,et al.  Derivation of an adiabatic time-dependent Hartree-Fock formalism from a variational principle , 1976 .

[153]  S. Fayans,et al.  Energy-density functional approach for non-spherical nuclei , 1995 .

[154]  P. Reinhard,et al.  Dynamical and quantum mechanical corrections to heavy-ion optical potentials , 1981 .

[155]  F. Villars Adiabatic time-dependent Hartree-Fock theory in nuclear physics☆ , 1977 .

[156]  D. Lacroix,et al.  Superfluid dynamics of Fm 258 fission , 2015 .

[157]  O. Serot,et al.  Prompt fission neutron spectra of actinides , 2016 .

[158]  J. Dobaczewski,et al.  Solution of the Skyrme-Hartree-Fock equations in the Cartesian deformed harmonic oscillator basis. (I) The method , 1996 .

[159]  P. Quentin,et al.  Global microscopic calculations of ground-state spins and parities for odd-mass nuclei , 2007, nucl-th/0703092.

[160]  A. Staszczak,et al.  Fission of rotating fermium isotopes , 2014 .

[161]  L. Wilets,et al.  Formal Aspects of Nuclear Moment-of-Inertia Theory , 1970 .

[162]  J. Skalski Adiabatic fusion barriers from self-consistent calculations , 2007 .

[163]  D. Thouless,et al.  Variational approach to collective motion , 1962 .

[164]  Skalski,et al.  Spontaneous-fission half-lives of deformed superheavy nuclei. , 1995, Physical review. C, Nuclear physics.

[165]  A. Klein,et al.  Classical theory of collective motion in the large amplitude, small velocity regime , 1991 .

[166]  Y. Alhassid,et al.  Phenomenology of shape transitions in hot nuclei , 1984 .

[167]  J. Berger Quantum dynamics of wavepackets on two-dimensional potential energy surfaces governing nuclear fission , 1986 .

[168]  F. Strassmann,et al.  Über den Nachweis und das Verhalten der bei der Bestrahlung des Urans mittels Neutronen entstehenden Erdalkalimetalle , 2005, Naturwissenschaften.

[169]  J. Berger,et al.  Constrained hartree-fock and beyond , 1989 .

[170]  Masha Sosonkina,et al.  Computational nuclear quantum many-body problem: The UNEDF project , 2013, Comput. Phys. Commun..

[171]  P. Goddard,et al.  Fission dynamics within time-dependent Hartree-Fock: Deformation-induced fission , 2015, 1504.00919.

[172]  P. Ring,et al.  Relativistic mean-field description of light Λ hypernuclei with large neutron excess , 1998 .

[173]  A. Staszczak,et al.  Influence of the pairing vibrations on spontaneous fission probability , 1989 .

[174]  T. Lesinski Density Functional Theory with Spatial-Symmetry Breaking and Configuration Mixing , 2013, 1301.0807.

[175]  D. Vretenar,et al.  Relativistic Hartree-Bogoliubov Theory with Finite Range Pairing Forces in Coordinate Space: Neutron Halo in Light Nuclei , 1997 .

[176]  Y. Lazarev Influence of Pairing Correlations on the Probability and Dynamics of Tunnelling Through the Barrier in Fission and Fusion of Complex Nuclei , 1987 .

[177]  P. Ring,et al.  The decay of hot nuclei , 1993 .

[178]  W. Myers,et al.  Nuclear ground state masses and deformations , 1995 .

[179]  J. F. Berger,et al.  Time-dependent quantum collective dynamics applied to nuclear fission , 1991 .

[180]  G. Bertsch,et al.  Pairing dynamics in particle transport , 2012, 1202.2681.

[181]  J. Dobaczewski,et al.  Solution of the Skyrme—Hartree—Fock equations in the Cartesian deformed harmonic oscillator basis II. The program HFODD , 1997 .

[182]  W. Nazarewicz,et al.  Excitation energy dependence of fission in the mercury region , 2013, 1406.6955.

[183]  J. Delaroche,et al.  Structure properties of {sup 226}Th and {sup 256,258,260}Fm fission fragments: Mean-field analysis with the Gogny force , 2007, 0712.0252.

[184]  T. Nakatsukasa Density functional approaches to collective phenomena in nuclei: Time-dependent density-functional theory for perturbative and non-perturbative nuclear dynamics , 2012, 1210.0378.

[185]  W. Younes,et al.  Microscopic Calculation of 240Pu Scission with a Finite-Range Effective Force , 2009, 0910.1284.

[186]  W. Nazarewicz,et al.  Adaptive multi-resolution 3D Hartree-Fock-Bogoliubov solver for nuclear structure , 2014, 1407.3848.

[187]  P. Reinhard,et al.  REVIEW ARTICLE: The generator coordinate method and quantised collective motion in nuclear systems , 1987 .

[188]  A. Lallena,et al.  Tensor and tensor-isospin terms in the effective Gogny interaction , 2012, 1210.5333.

[189]  G. Martínez-Pinedo,et al.  The role of fission in the r-process , 2007 .

[190]  Robert M Parrish,et al.  Exact tensor hypercontraction: a universal technique for the resolution of matrix elements of local finite-range N-body potentials in many-body quantum problems. , 2013, Physical review letters.

[191]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[192]  D. Higdon,et al.  Quantification of Uncertainties in Nuclear Density Functional Theory , 2014, 1406.4374.

[193]  B. Wilkins,et al.  Scission-point model of nuclear fission based on deformed-shell effects , 1976 .

[194]  L. Robledo,et al.  Cluster Radioactivity of th Isotopes in the Mean-Field Hfb Theory , 2007, 0710.4411.

[195]  P. Reinhard Zero-point energies in potential-energy surfaces , 1975 .

[196]  H. Weidenmüller,et al.  Induced nuclear fission viewed as a diffusion process: Transients , 1983 .

[197]  Existence of a density functional for an intrinsic state , 2007, 0707.3099.

[198]  L. Robledo,et al.  Spontaneous fission of Fm isotopes in the HFB framework , 2006 .

[199]  J. E. Lynn,et al.  The double-humped fission barrier , 1980 .

[200]  N. Schunck,et al.  Description of induced nuclear fission with Skyrme energy functionals. II. Finite temperature effects , 2013, 1311.2620.

[201]  J. M. Verbeke,et al.  Fission Reaction Event Yield Algorithm, FREYA - For event-by-event simulation of fission , 2014, Comput. Phys. Commun..

[202]  I. Deloncle,et al.  Introduction of a valence space in quasiparticle random-phase approximation: Impact on vibrational mass parameters and spectroscopic properties , 2015 .

[203]  Peter L. Balise,et al.  Vector and Tensor Analysis with Applications , 1969 .

[204]  W. Nazarewicz,et al.  Quadrupole collective inertia in nuclear fission: Cranking approximation , 2010, 1007.3763.

[205]  P. Reinhard,et al.  The generator-coordinate-method with conjugate parameters and the unification of microscopic theories for large amplitude collective motion , 1980 .

[206]  L. Reichl A modern course in statistical physics , 1980 .

[207]  W. Myers,et al.  The nuclear droplet model for arbitrary shapes , 1974 .

[208]  Paul-Henri Heenen,et al.  Self-consistent mean-field models for nuclear structure , 2003 .

[209]  M. Baldo,et al.  New Kohn-Sham density functional based on microscopic nuclear and neutron matter equations of state , 2012, 1210.1321.

[210]  M. Kowal,et al.  Eight-dimensional calculations of the third barrier in $^{232}$Th , 2013 .

[211]  D. Lacroix,et al.  Configuration mixing within the energy density functional formalism: Removing spurious contributions from nondiagonal energy kernels , 2008, 0809.2041.

[212]  P. Ring,et al.  SELFCONSISTENT TREATMENT OF EXCITED ROTATIONAL BANDS IN DEFORMED NUCLEI , 1980 .

[213]  Berger,et al.  Microscopic study of the 238U-238U system and anomalous pair production. , 1990, Physical review. C, Nuclear physics.

[214]  S. Rosswog,et al.  On the astrophysical robustness of the neutron star merger r-process , 2012, 1206.2379.

[215]  J. Delaroche,et al.  Structure properties of even–even actinides at normal and super deformed shapes analysed using the Gogny force , 2006 .

[216]  K. Schmidt,et al.  Fission rate in multi-dimensional Langevin calculations , 2007 .

[217]  H. Weidenmueller,et al.  Generalization of Kramers's formula: Fission over a multidimensional potential barrier , 1983 .

[218]  D. Brink,et al.  Time-dependent hartree-fock theory with Skyrme's interaction , 1975 .

[219]  C. Sneden,et al.  Neutron-Capture Elements in the Early Galaxy , 2008 .

[220]  L. Robledo,et al.  FISSION BARRIERS AT FINITE TEMPERATURE: A THEORETICAL DESCRIPTION WITH THE GOGNY FORCE , 2009 .

[221]  K. Sugawara-Tanabe,et al.  Theory of the cranked temperature-dependent Hartree-Fock-Bogoliubov approximation and parity projected statistics , 1981 .

[222]  P. Ring,et al.  On the treatment of a two-dimensional fission model with complex trajectories , 1978 .

[223]  P. Möller,et al.  Nuclear fission modes and fragment mass asymmetries in a five-dimensional deformation space , 2001, Nature.

[224]  R. Parr Density-functional theory of atoms and molecules , 1989 .

[225]  L. Robledo,et al.  Microscopic description of cluster radioactivity in actinide nuclei , 2011, 1107.1478.

[226]  L. Robledo,et al.  Fission properties of the Barcelona-Catania-Paris-Madrid energy density functional , 2013 .

[227]  L. Robledo,et al.  THE EMISSION OF HEAVY CLUSTERS DESCRIBED IN THE MEAN-FIELD HFB THEORY: THE CASE OF 242Cm , 2008 .

[228]  E. T. Ritter,et al.  New Mössbauer Levels in the Rare Earths Following Coulomb Excitation , 1967 .

[229]  P. Reinhard,et al.  Systematics of fission barriers in superheavy elements , 2004 .

[230]  V. V. Pashkevich,et al.  On the asymmetric deformation of fissioning nuclei , 1971 .

[231]  H. Weidenmüller,et al.  Stationary diffusion over a multidimensional potential barrier: A generalization of Kramers' formula , 1984 .

[232]  D. Vautherin,et al.  Self-consistent calculation of the fission barrier of 240Pu , 1974 .

[233]  P. Bergh,et al.  β-delayed fission of 180 Tl , 2013 .

[234]  P. Möller,et al.  Global calculations of ground-state axial shape asymmetry of nuclei. , 2006, Physical review letters.

[235]  J. Dechargé,et al.  Hartree-Fock-Bogolyubov calculations with the D 1 effective interaction on spherical nuclei , 1980 .

[236]  J. D. Talman Some properties of three-dimensional harmonic oscillator wave functions , 1970 .

[237]  M. Giannoni An introduction to the adiabatic time-dependent Hartree-Fock method , 1984 .

[238]  A. S. Umar,et al.  Basis Spline Collocation Method for Solving the Schrödinger Equation in Axillary Symmetric Systems , 1996 .

[239]  A. S. Umar,et al.  Formation and dynamics of fission fragments , 2013, 1312.4669.

[240]  J. Berger,et al.  Microscopic analysis of collective dynamics in low energy fission , 1984 .

[241]  L. Robledo,et al.  Nuclear shapes in 176W with density dependent forces: from ground state to fission , 1997 .

[242]  W. Nazarewicz,et al.  Pairing-induced speedup of nuclear spontaneous fission , 2014, 1410.1264.

[243]  M. Brack,et al.  Extended Thomas-Fermi theory at finite temperature , 1985 .

[244]  E. Suraud,et al.  Density functional theory and Kohn-Sham scheme for self-bound systems , 2009, 0904.0162.

[245]  A. Goodman FINITE-TEMPERATURE HFB THEORY , 1981 .

[246]  P. Ring,et al.  Fission barriers in covariant density functional theory: Extrapolation to superheavy nuclei , 2012, 1205.2138.

[247]  A. Iwamoto,et al.  Spontaneous Fission: A Kinetic Approach , 1997 .

[248]  J C Pei,et al.  Fission barriers of compound superheavy nuclei. , 2009, Physical review letters.

[249]  P. Bonche,et al.  Superdeformed rotational bands in the mercury region. A cranked Skyrme-Hartree-Fock-Bogoliubov study , 1993, nucl-th/9312011.

[250]  P. Reinhard,et al.  On stochastic approaches of nuclear dynamics , 1996 .

[251]  H. Goutte,et al.  Microscopic approach of fission dynamics applied to fragment kinetic energy and mass distributions in U 238 , 2005 .

[252]  P. Reinhard,et al.  Misfits in Skyrme–Hartree–Fock , 2010, 1002.0027.

[253]  J. Dobaczewski,et al.  Solution of the Skyrme-Hartree-Fock equations in the Cartesian deformed harmonic-oscillator basis. (III) HFODD (v1.75r): a new version of the program , 2000 .

[254]  A. Bulgac,et al.  Induced Fission of (240)Pu within a Real-Time Microscopic Framework. , 2015, Physical review letters.

[255]  S. Levit,et al.  Properties of highly excited nuclei , 1984 .

[256]  H. Köhler Skyrme force and the mass formula , 1976 .

[257]  A. Pastore,et al.  Tools for incorporating a D-wave contribution in Skyrme energy density functionals , 2014, 1406.0340.

[258]  J. Berger,et al.  Gogny force with a finite-range density dependence , 2015 .

[259]  P. Ring,et al.  Fission barriers in actinides in covariant density functional theory: The Role of triaxiality , 2010, 1010.1803.

[260]  K. Langanke,et al.  Fission Properties for R-Process Nuclei , 2011, 1112.1026.

[261]  W. Nazarewicz,et al.  Spontaneous fission lifetimes from the minimization of self-consistent collective action , 2013, 1310.2003.

[262]  T. Lesinski,et al.  The tensor part of the Skyrme energy density functional. I. Spherical nuclei , 2007, 0704.0731.

[263]  M. Baranger,et al.  An adiabatic time-dependent Hartree-Fock theory of collective motion in finite systems , 1978 .

[264]  L. Robledo,et al.  Dynamic versus static fission paths with realistic interactions , 2014, 1408.6940.

[265]  S. Fayans,et al.  Isotope shifts within the energy-density functional approach with density dependent pairing☆ , 1994 .

[266]  P. Goddard A microscopic study of nuclear fission using the time-dependent Hartree-Fock method , 2014 .

[267]  D. Zaretsky,et al.  ON THE SPONTANEOUS FISSION OF NUCLEI , 1966 .

[268]  Shan-Gui Zhou,et al.  Multidimensionally-constrained relativistic mean-field study of spontaneous fission: coupling between shape and pairing degrees of freedom , 2016, 1603.00992.

[269]  A. Sobiczewski,et al.  Fission barriers for even-even superheavy nuclei , 2010 .

[270]  D. Gogny Simple separable expansions for calculating matrix elements of two-body local interactions with harmonic oscillator functions , 1975 .

[271]  M. V. Stoitsov,et al.  Variation after particle-number projection for the Hartree-Fock-Bogoliubov method with the Skyrme energy density functional , 2007 .

[272]  L. M. Robledo,et al.  Microscopic justification of the equal filling approximation , 2008, 0805.4318.

[273]  G. Seaborg,et al.  The Transuranium People: The Inside Story , 2000 .

[274]  Kenneth J. Roche,et al.  Time-dependent density functional theory applied to superfluid nuclei , 2008 .

[275]  J. Bartel,et al.  Towards a better parametrisation of Skyrme-like effective forces: A critical study of the SkM force , 1982 .

[276]  Berger,et al.  Mean-field description of ground-state properties of drip-line nuclei: Pairing and continuum effects. , 1996, Physical review. C, Nuclear physics.

[277]  M. Moshinsky,et al.  Transformation brackets for harmonic oscillator functions , 1959 .

[278]  T. Lesinski,et al.  Non‐empirical Nuclear Energy Functionals, Pairing Gaps and Odd‐Even Mass Differences , 2009, 0907.1043.

[279]  Yukio Hashimoto,et al.  Canonical-basis time-dependent Hartree-Fock-Bogoliubov theory and linear-response calculations , 2010, 1007.0785.

[280]  W. Ryssens,et al.  Corrigendum to "Solution of the Skyrme HF+BCS equation on a 3D mesh II. A new version of the Ev8 code" [Comput. Phys. Comm. 187(2) (2015) 175-194] , 2015, Comput. Phys. Commun..

[281]  Stefan M. Wild,et al.  Uncertainty quantification for nuclear density functional theory and information content of new measurements. , 2015, Physical review letters.

[282]  D. Lacroix,et al.  Beyond mean-field calculation for pairing correlation , 2012, 1205.0577.

[283]  D. Haar,et al.  Quantum Mechanics Vol. 1 , 1965 .

[284]  S. G. Rohoziński On the Gaussian overlap approximation for the collective excitations of odd nuclei , 2015 .

[285]  J. Dobaczewski,et al.  Effective pseudopotential for energy density functionals with higher-order derivatives , 2011, 1103.0682.

[286]  R. Peierls,et al.  THE COLLECTIVE MODEL OF NUCLEAR MOTION , 1957 .

[287]  W. Ryssens,et al.  Solution of the Skyrme HF+BCS equation on a 3D mesh , 2005, Comput. Phys. Commun..

[288]  LISE MEITNER,et al.  Disintegration of Uranium by Neutrons: a New Type of Nuclear Reaction , 1939, Nature.

[289]  D. Lacroix,et al.  Particle-number restoration within the energy density functional formalism , 2008, 0809.2045.

[290]  J. Messud Time-dependent internal density functional theory formalism and Kohn-Sham scheme for self-bound systems , 2009 .

[291]  T. Werner,et al.  Shape Coexistence Effects of Super- and Hyperdeformed Configurations in Rotating Nuclei II. Nuclei with 42 ≤ Z ≤ 56 and 74 ≤ Z ≤ 92 , 1995 .

[292]  P. Ring,et al.  Application of finite element methods in relativistic mean-field theory: spherical nucleus , 1997 .

[293]  J. L. Norton,et al.  New Calculation of Fission Barriers for Heavy and Superheavy Nuclei , 1972 .

[294]  W. Nazarewicz,et al.  Spontaneous fission modes and lifetimes of superheavy elements in the nuclear density functional theory , 2012, 1208.1215.

[295]  P. Reinhard,et al.  A consistent microscopic theory of collective motion in the framework of an ATDHF approach , 1978 .

[296]  M. Bender,et al.  SURFACE SYMMETRY ENERGY OF NUCLEAR ENERGY DENSITY FUNCTIONALS , 2010, 1012.5829.

[297]  J. Randrup,et al.  Fission-fragment mass distributions from strongly damped shape evolution , 2011, 1107.2624.

[298]  M. Strayer,et al.  The Nuclear Many-Body Problem , 2004 .

[299]  J. Dobaczewski,et al.  Microscopic description of complex nuclear decay: Multimodal fission , 2009, 0906.4248.

[300]  T. Duguet,et al.  Skyrme functional from a three-body pseudopotential of second order in gradients: Formalism for central terms , 2013, 1310.0854.

[301]  M. Baldo,et al.  Kohn–Sham density functional inspired approach to nuclear binding , 2007, 0706.0658.

[302]  W. Nazarewicz,et al.  Systematic study of fission barriers of excited superheavy nuclei , 2009, 0904.3910.

[303]  K. Davies,et al.  Effect of viscosity on the dynamics of fission , 1976 .

[304]  Stefan M. Wild,et al.  Error Analysis in Nuclear Density Functional Theory , 2014, 1406.4383.

[305]  M. V. Stoitsov,et al.  Deformed coordinate-space Hartree-Fock-Bogoliubov approach to weakly bound nuclei and large deformations , 2008, 0807.3036.

[306]  Stefan M. Wild,et al.  Nuclear Energy Density Optimization , 2010, 1005.5145.

[307]  Jean-Paul Blaizot,et al.  Quantum Theory of Finite Systems , 1985 .

[308]  G. Hager,et al.  Fission of super-heavy nuclei explored with Skyrme forces , 2009, 1002.0031.

[309]  W. Swiatecki,et al.  STUDIES IN THE LIQUID-DROP THEORY OF NUCLEAR FISSION , 1965 .

[310]  S. Levit,et al.  Statistical properties and stability of hot nuclei , 1985 .

[311]  W. Myers,et al.  Geometrical Relationships of Macroscopic Nuclear Physics , 1988 .

[312]  J. Hamilton,et al.  Fission and Properties of Neutron-Rich Nuclei , 1998, Fission and Properties of Neutron-Rich Nuclei.

[313]  Daniel Jean Baye,et al.  Generalised meshes for quantum mechanical problems , 1986 .

[314]  Cédric Simenel,et al.  Particle transfer reactions with the time-dependent Hartree-Fock theory using a particle number projection technique. , 2010, Physical review letters.

[315]  D. Brink,et al.  The generator coordinate theory of collective motion , 1968 .

[316]  David Regnier,et al.  FELIX-1.0: A finite element solver for the time dependent generator coordinate method with the Gaussian overlap approximation , 2015, Comput. Phys. Commun..

[317]  T. Nakatsukasa,et al.  Adiabatic Selfconsistent Collective Coordinate Method for Large Amplitude Collective Motion in Nuclei with Pairing Correlations , 2000, nucl-th/0001056.

[318]  T. Duguet,et al.  Pairing correlations. II.: Microscopic analysis of odd-even mass staggering in nuclei , 2001, nucl-th/0105050.

[319]  L. Robledo,et al.  On the solution of the Hartree-Fock-Bogoliubov equations by the conjugate gradient method , 1995 .

[320]  John W. Negele,et al.  The mean-field theory of nuclear structure and dynamics , 1982 .

[321]  Peter Möller,et al.  New developments in the calculation of heavy-element fission barriers , 1989 .

[322]  Werner,et al.  Pairing, temperature, and deformed-shell effects on the properties of superdeformed 152Dy nucleus. , 1988, Physical review. C, Nuclear physics.

[323]  L. Robledo,et al.  A mean field view of some clustering phenomena in light and heavy nuclei , 2004 .

[324]  P. Ring,et al.  On the solution of constrained hartree-fock-bogolyubov equations , 1976 .