Stochastic bitstream-based CNN and its implementation on FPGA

In this paper, we present a new type of cellular nonlinear network (CNN) model and FPGA implementation of cellular nonlinear network universal machine. Our approach uses stochastic bitstreams as data carriers. With the help of stochastic data streams more complex nonlinear cell interactions can be realized than conventional CNN hardware implementations have. The accuracy as indexed by bit depth resolution can be improved at the expense of computation time without influencing hardware complexity. Our simulation results prove the universality and utility of the model. Our experimental results show that the proposed model can be implemented on an FPGA hardware. Copyright © 2008 John Wiley & Sons, Ltd.

[1]  J. Shawe-Taylor,et al.  A stochastic neural architecture that exploits dynamically reconfigurable FPGAs , 1993, [1993] Proceedings IEEE Workshop on FPGAs for Custom Computing Machines.

[2]  Yasuji Sawada,et al.  Functional abilities of a stochastic logic neural network , 1992, IEEE Trans. Neural Networks.

[3]  Leon O. Chua,et al.  The CNN paradigm , 1993 .

[4]  A. Zarandy,et al.  Bi-i: a standalone ultra high speed cellular vision system , 2005, IEEE Circuits and Systems Magazine.

[5]  Lin-Bao Yang,et al.  Cellular neural networks: theory , 1988 .

[6]  Ákos Zarándy,et al.  The New Framework Of Applications: The Aladdin System , 2003, J. Circuits Syst. Comput..

[7]  Péter Szolgay,et al.  Emulated digital CNN-UM solution of partial differential equations: Research Articles , 2006 .

[8]  Brian R. Gaines,et al.  Stochastic Computing Systems , 1969 .

[9]  Piotr Dudek,et al.  A general-purpose processor-per-pixel analog SIMD vision chip , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[10]  Fernando Corinto,et al.  On Stability of Cellular Neural Networks with Polynomial Interactions , 2003, Int. J. Neural Syst..

[11]  M. Ercsey-Ravasz,et al.  Stochastic simulations on the cellular wave computers , 2006 .

[12]  Ángel Rodríguez-Vázquez,et al.  ACE4k: An analog I/O 64×64 visual microprocessor chip with 7-bit analog accuracy , 2002, Int. J. Circuit Theory Appl..

[13]  S. Zhong,et al.  Exponential stability analysis of stochastic delayed cellular neural network , 2006 .

[14]  Leon O. Chua,et al.  Cellular Neural Networks and Visual Computing: Foundations and Applications , 2002 .

[15]  Fernando Corinto,et al.  Non-linear coupled CNN models for multiscale image analysis , 2006, Int. J. Circuit Theory Appl..

[16]  Brad Hutchings,et al.  FPGA-based stochastic neural networks-implementation , 1994, Proceedings of IEEE Workshop on FPGA's for Custom Computing Machines.

[17]  Péter Szolgay,et al.  Emulated digital CNN-UM solution of partial differential equations , 2006, Int. J. Circuit Theory Appl..

[18]  John Shawe-Taylor,et al.  Emergent activation functions from a stochastic bit-stream neuron , 1994 .

[19]  Tamás Roska,et al.  Various implementations of topographic, sensory, cellular wave computers , 2005, 2005 IEEE International Symposium on Circuits and Systems.

[20]  Tamás Roska,et al.  Digital implementation of cellular sensor-computers , 2006, Int. J. Circuit Theory Appl..

[21]  Tamás Roska,et al.  An Emulated Digital CNN Implementation , 1999, J. VLSI Signal Process..

[22]  S.J. Carey,et al.  A Control System for a Cellular Processor Array , 2006, 2006 10th International Workshop on Cellular Neural Networks and Their Applications.

[23]  Jack L. Meador,et al.  Programmable impulse neural circuits , 1991, IEEE Trans. Neural Networks.

[24]  Péter Szolgay,et al.  Configurable multilayer CNN-UM emulator on FPGA , 2003 .

[25]  Ángel Rodríguez-Vázquez,et al.  ACE16k: the third generation of mixed-signal SIMD-CNN ACE chips toward VSoCs , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.