Spectral characterization of single photon sources with ultra-high resolution, accuracy and sensitivity

In future quantum communication systems, single photons, as the information carriers, are required to possess very narrow linewidths and accurate wavelengths for an efficient interaction with quantum memories. Spectral characterization of such single photon sources is necessary and must be performed with very high spectral resolution, wavelength accuracy and detection sensitivity. In this paper, we propose a method to precisely characterize spectral properties of narrow-linewidth single-photon sources using an atomic vapor cell based on electromagnetically-induced transparency (EIT). By using an atomic cesium vapor cell, we have experimentally demonstrated a spectral resolution of better than 150 kHz, an absolute wavelength accuracy of within 50 kHz and an exceptional detection sensitivity suitable for optical signals as weak as −117 dBm.

[1]  Lijun Ma,et al.  Optical quantum memory based on electromagnetically induced transparency , 2017, Journal of optics.

[2]  N. Gisin,et al.  Quantum memory for photons , 2015 .

[3]  Joshua Nunn,et al.  Quantum memories: emerging applications and recent advances , 2015, Journal of modern optics.

[4]  Lijun Ma,et al.  Narrow-linewidth source of greatly non-degenerate photon pairs for quantum repeaters from a short singly resonant cavity , 2015 .

[5]  H. de Riedmatten,et al.  A waveguide frequency converter connecting rubidium-based quantum memories to the telecom C-band , 2014, Nature Communications.

[6]  G. Corrielli,et al.  Quantum frequency conversion of quantum memory compatible photons to telecommunication wavelengths. , 2013, Optics express.

[7]  Lijun Ma,et al.  Frequency correlated biphoton spectroscopy using tunable upconversion detector , 2013 .

[8]  Christoph Simon,et al.  Prospective applications of optical quantum memories , 2013, 1306.6904.

[9]  G. Guo,et al.  Single-photon-level quantum image memory based on cold atomic ensembles , 2013, Nature Communications.

[10]  Jianming Wen,et al.  Optimal storage and retrieval of single-photon waveforms. , 2012, Optics express.

[11]  Masahide Sasaki,et al.  High-fidelity conversion of photonic quantum information to telecommunication wavelength with superconducting single-photon detectors , 2012, 1207.1585.

[12]  Irina Novikova,et al.  Electromagnetically induced transparency‐based slow and stored light in warm atoms , 2012 .

[13]  Christian Hepp,et al.  Visible-to-telecom quantum frequency conversion of light from a single quantum emitter. , 2012, Physical review letters.

[14]  C. M. Natarajan,et al.  Superconducting nanowire single-photon detectors: physics and applications , 2012, 1204.5560.

[15]  Jian-Wei Pan,et al.  Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion , 2011 .

[16]  Lijun Ma,et al.  Single photon frequency up-conversion and its applications , 2011, Optical Engineering + Applications.

[17]  Christine A. Muschik,et al.  Quantum information at the interface of light with atomic ensembles and micromechanical oscillators , 2011, Quantum Inf. Process..

[18]  Y. O. Dudin,et al.  A quantum memory with telecom-wavelength conversion , 2010 .

[19]  A. Kuzmich,et al.  Entanglement of light-shift compensated atomic spin waves with telecom light. , 2010, Physical review letters.

[20]  Hiroki Takesue,et al.  Single-photon frequency down-conversion experiment , 2010, 1006.0364.

[21]  Lijun Ma,et al.  Quantum Transduction of Telecommunications-band Single Photons from a Quantum Dot by Frequency Upconversion , 2010, 1004.2686.

[22]  J. H. Müller,et al.  Quantum memories , 2010, 1003.1107.

[23]  R. Hadfield Single-photon detectors for optical quantum information applications , 2009 .

[24]  B. Sanders,et al.  Optical quantum memory , 2009, 1002.4659.

[25]  E S Polzik,et al.  Time gating of heralded single photons for atomic memories. , 2009, Optics letters.

[26]  Lijun Ma,et al.  Experimental study of high sensitivity infrared spectrometer with waveguide-based up-conversion detector(1). , 2009, Optics express.

[27]  S. A. Moiseev,et al.  Photon‐echo quantum memory in solid state systems , 2009 .

[28]  Matthias Scholz,et al.  Statistics of narrow-band single photons for quantum memories generated by ultrabright cavity-enhanced parametric down-conversion. , 2009, Physical review letters.

[29]  Jian-Wei Pan,et al.  Observation of prolonged coherence time of the collective spin wave of an atomic ensemble in a paraffin-coated {sup 87}Rb vapor cell , 2009, 0901.3627.

[30]  M. Fejer,et al.  Waveguide-based single-pixel up-conversion infrared spectrometer. , 2008, Optics express.

[31]  Jian-Wei Pan,et al.  Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories. , 2008, Physical review letters.

[32]  Aephraim M. Steinberg,et al.  Bright filter-free source of indistinguishable photon pairs. , 2008, Optics express.

[33]  D. Kalashnikov,et al.  Biphoton spectroscopy in a strongly nondegenerate regime of SPDC , 2008 .

[34]  J. Laurat,et al.  Mapping photonic entanglement into and out of a quantum memory , 2007, Nature.

[35]  K. Akiba,et al.  Storage and retrieval of nonclassical photon pairs and conditional single photons generated by the parametric down-conversion process , 2007, 0711.3377.

[36]  D. Kalashnikov,et al.  Biphoton spectroscopy of YAG:Er3+ crystal , 2007 .

[37]  Jian-Wei Pan,et al.  Memory-built-in quantum teleportation with photonic and atomic qubits , 2007, 0705.1256.

[38]  M. Kozuma,et al.  Frequency-filtered storage of parametric fluorescence with electromagnetically induced transparency , 2007, quant-ph/0701073.

[39]  F. Wong,et al.  Time-bin-modulated biphotons from cavity-enhanced down-conversion. , 2006, Physical review letters.

[40]  A I Lvovsky,et al.  Decoherence of electromagnetically induced transparency in atomic vapor. , 2006, Optics letters.

[41]  N. Gisin,et al.  Low jitter up-conversion detectors for telecom wavelength GHz QKD , 2006 .

[42]  N. Gisin,et al.  GHz QKD at telecom wavelengths using up-conversion detectors , 2005, quant-ph/0512054.

[43]  J. Marangos,et al.  Electromagnetically induced transparency : Optics in coherent media , 2005 .

[44]  M. Fejer,et al.  Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides. , 2005, Optics letters.

[45]  Marius A Albota,et al.  Efficient single-photon counting at 1.55 microm by means of frequency upconversion. , 2004, Optics letters.

[46]  Paul G. Kwiat,et al.  High efficiency single photon detection via frequency up-conversion , 2004 .

[47]  Giuliano Scarcelli,et al.  Remote spectral measurement using entangled photons , 2003, quant-ph/0407164.

[48]  Takayoshi Kobayashi,et al.  Spectroscopy by frequency-entangled photon pairs , 2003, quant-ph/0306154.

[49]  Sergei P. Kulik,et al.  Quantum teleportation with a complete Bell state measurement , 2000, Physical review letters.

[50]  Z. Y. Ou,et al.  Cavity Enhanced Spontaneous Parametric Down-Conversion for the Prolongation of Correlation Time between Conjugate Photons , 1999 .

[51]  Leo W. Hollberg,et al.  Spectroscopy in Dense Coherent Media: Line Narrowing and Interference Effects , 1997 .

[52]  Kumar,et al.  Observation of quantum frequency conversion. , 1992, Physical review letters.

[53]  P. Kumar,et al.  Quantum frequency conversion. , 1990, Optics letters.

[54]  Harris,et al.  Nonlinear optical processes using electromagnetically induced transparency. , 1990, Physical review letters.