What is limiting near-infrared astrometry in the Galactic Centre?

We systematically investigate the error sources for high-precision astrometry from adaptive optics (AO) based near-infrared imaging data. We focus on the application in the crowded stellar field in the Galactic Centre. We show that at the level of ≲ 100 μas a number of effects are limiting the accuracy. Most important are the imperfectly subtracted seeing haloes of neighbouring stars, residual image distortions and unrecognized confusion of the target source with fainter sources in the background. Further contributors to the error budget are the uncertainty in estimating the point-spread function, the signal-to-noise ratio induced statistical uncertainty, coordinate transformation errors, the chromaticity of refraction in Earth's atmosphere, the post-AO differential tilt jitter and anisoplanatism. For stars as bright as m K = 14, residual image distortions limit the astrometry, for fainter stars the limitation is set by the seeing haloes of the surrounding stars. In order to improve the astrometry substantially at the current generation of telescopes, an AO system with high performance and weak seeing haloes over a relatively small field (r ≲ 3 arcsec) is suited best. Furthermore, techniques to estimate or reconstruct the seeing halo could be promising.

[1]  Reinhard Genzel,et al.  Probing post-newtonian physics near the galactic black hole with stellar redshift measurements , 2005 .

[2]  A. Eckart,et al.  Composition of the galactic center star cluster. Population analysis from adaptive optics narrow ban , 2009, 0903.2135.

[3]  A. Eckart,et al.  The nuclear star cluster of the Milky Way: proper motions and mass , 2009, 0902.3892.

[4]  A. Eckart,et al.  Multiplicity of young stars in and around R Coronae Australis , 2008, 0807.4393.

[5]  David Mouillet,et al.  Modeling and analysis of XAO systems: application to VLT-Planet Finder , 2004, SPIE Astronomical Telescopes + Instrumentation.

[6]  Berkeley,et al.  On the Nature of the Fast-Moving Star S2 in the Galactic Center , 2007, 0711.3344.

[7]  D. Mouillet,et al.  A giant planet candidate near a young brown dwarf - Direct VLT/NACO observations using IR wavefront sensing , 2004 .

[8]  T. Paumard,et al.  The nature of the Galactic Center source IRS 13 revealed by high spatial resolution in the infrared , 2004 .

[9]  K. Menten,et al.  A star in a 15.2-year orbit around the supermassive black hole at the centre of the Milky Way , 2002, Nature.

[10]  M. F. Radioastronomie,et al.  The Proper Motion of Sagittarius A*. II. The Mass of Sagittarius A* , 2004, astro-ph/0408107.

[11]  T. Bedding Optical and infrared interferometry , 2000, astro-ph/0011536.

[12]  R. Genzel,et al.  MONITORING STELLAR ORBITS AROUND THE MASSIVE BLACK HOLE IN THE GALACTIC CENTER , 2008, 0810.4674.

[13]  T. Alexander Pinpointing the Massive Black Hole in the Galactic Center with Gravitationally Lensed Stars , 2001, astro-ph/0102055.

[14]  R. Lenzen,et al.  The Stellar Cusp around the Supermassive Black Hole in the Galactic Center , 2003, astro-ph/0305423.

[16]  Reinhard Genzel,et al.  Variable and Embedded Stars in the Galactic Center , 1999 .

[17]  Jessica R. Lu,et al.  Measuring Distance and Properties of the Milky Way’s Central Supermassive Black Hole with Stellar Orbits , 2008, 0808.2870.

[18]  Karl Gebhardt,et al.  Evidence for an Intermediate Mass Black Hole in Omega Centauri , 2006, 0801.2782.

[19]  Scot S. Olivier,et al.  Extreme adaptive optics planet imager: XAOPI , 2003, SPIE Optics + Photonics.

[20]  Mark R. Morris,et al.  Massive star formation near the Galactic center and the fate of the stellar remnants , 1993 .

[21]  Alfred Krabbe,et al.  The Dark Mass Concentration in the Central Parsec of the Milky Way , 1996 .

[22]  A. M. Ghez,et al.  High Proper-Motion Stars in the Vicinity of Sagittarius A*: Evidence for a Supermassive Black Hole at the Center of Our Galaxy , 1998 .

[23]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[24]  Andreas Eckart,et al.  Periastron shifts of stellar orbits near the Galactic Center , 2001 .

[25]  Los Angeles,et al.  Diffraction-limited Imaging Spectroscopy of the Sagittarius A* Region Using OSIRIS, a New Keck Instrument , 2006, astro-ph/0605253.

[26]  Norbert Hubin,et al.  SINFONI in the Galactic Center: Young Stars and Infrared Flares in the Central Light-Month , 2005 .

[27]  R. Neuhaeuser,et al.  Astrometric and photometric monitoring of GQ Lupi and its sub-stellar companion , 2008, 0801.2287.

[28]  K. Sellgren,et al.  Really Cool Stars and the Star Formation History at the Galactic Center , 2003, astro-ph/0307291.

[29]  R. Treuhaft,et al.  The Proper Motion of Sagittarius A*. I. First VLBA Results , 1999, astro-ph/9905075.

[30]  L. Mancini,et al.  GRAVITATIONAL LENSING OF STARS ORBITING THE MASSIVE BLACK HOLE IN THE GALACTIC CENTER , 2008, 0812.3853.

[31]  Jessica R. Lu,et al.  A Constant Spectral Index for Sagittarius A* during Infrared/X-Ray Intensity Variations , 2007, 0706.1782.

[32]  Laird M. Close,et al.  Analysis of isoplanatic high resolution stellar fields by the StarFinder code , 2000 .

[33]  Eric Gendron,et al.  New algorithms for adaptive optics point-spread function reconstruction , 2006 .

[34]  Gravitational Lensing of Stars in the Central Arcsecond of Our Galaxy , 2005, astro-ph/0503664.

[35]  M. F. Physik,et al.  The Position of Sagittarius A*. II. Accurate Positions and Proper Motions of Stellar SiO Masers near the Galactic Center , 2002, astro-ph/0212273.

[36]  S. R. Kulkarni,et al.  Precision Astrometry With Adaptive Optics , 2009 .

[37]  C. Townes,et al.  Ne II 12.8 micron emission from the galactic center. II , 1977 .

[38]  G. Neugebauer,et al.  The First Measurement of Spectral Lines in a Short-Period Star Bound to the Galaxy’s Central Black Hole: A Paradox of Youth , 2003 .

[39]  T. Broadhurst,et al.  Monitoring lensed starlight emitted close to the Galactic centre , 2004, astro-ph/0407220.

[40]  UCLA,et al.  Stellar Dynamics at the Galactic Center with an Extremely Large Telescope , 2004, astro-ph/0404407.

[41]  Karl Gebhardt,et al.  Gemini and Hubble Space Telescope Evidence for an Intermediate-Mass Black Hole in ω Centauri , 2008 .

[42]  L. Lindegren,et al.  Photoelectric Astrometry - a Comparison of Methods for Precise Image Location , 1978 .

[43]  Krzysztof G. Helminiak,et al.  Impact of the atmospheric refraction on the precise astrometry with adaptive optics in infrared , 2008, 0805.3369.

[44]  L. Lucy An iterative technique for the rectification of observed distributions , 1974 .

[45]  B. Edĺen,et al.  The Dispersion of Standard Air , 1953 .

[46]  France,et al.  Kinematics of the old stellar population at the galactic centre , 2008, 0810.1040.

[47]  Journal of the Optical Society of America , 1950, Nature.

[48]  A. Eckart,et al.  A Black Hole in the Galactic Center Complex IRS 13E , 2005 .

[49]  T. Paumard,et al.  Variations in the Spectral Slope of Sagittarius A* during a Near-Infrared Flare , 2005, astro-ph/0511302.