Theory and design of quantum cascade lasers in (111) n-type Si/SiGe

Institute of Microwaves and Photonics, School of Electronic and Electrical Engineering,University of Leeds, Leeds LS2 9JT, United Kingdom(Dated: July 11, 2011)Although most work towards the realization of group IV quantum cascade lasers (QCLs) hasfocused on valence band transitions, there are many desirable properties associated with the con-duction band. We show that the commonly cited shortcomings of n-type Si/SiGe heterostructurescan be overcome by moving to the (111) growth direction. Specifically, a large band offset and loweffective mass are achievable and subband degeneracy is preserved. We predict net gain up to latticetemperatures of 90K in a bound-to-continuum QCL with a double-metal waveguide, and show thata Ge interdiffusion length of at least 8˚A across interfaces is tolerable.

[1]  F. Stern,et al.  Electronic properties of two-dimensional systems , 1982 .

[2]  Thomas K. Gaylord,et al.  Determination of guided and leaky modes in lossless and lossy planar multilayer optical waveguides: reflection pole method and wavevector density method , 1999 .

[3]  A. Schenk UNIFIED BULK MOBILITY MODEL FOR LOW- AND HIGH-FIELD TRANSPORT IN SILICON , 1996 .

[4]  Weber,et al.  Near-band-gap photoluminescence of Si-Ge alloys. , 1989, Physical review. B, Condensed matter.

[5]  P. Dollfus,et al.  First-order intervalley scattering in low-dimensional systems , 2002 .

[6]  Y. Uemura,et al.  Theory of Valley Splitting in an N -Channel (100) Inversion Layer of Si I. Formulation by Extended Zone Effective Mass Theory , 1977 .

[7]  Gerhard Klimeck,et al.  Valley splitting in low-density quantum-confined heterostructures studied using tight-binding models , 2004 .

[8]  Qing Hu,et al.  Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators , 2005 .

[9]  Qing Hu,et al.  Terahertz quantum-cascade laser at λ≈100 μm using metal waveguide for mode confinement , 2003 .

[10]  M. S. Singh,et al.  Influence of substrate composition and crystallographic orientation on the band structure of pseudomorphic Si-Ge alloy films. , 1990, Physical review. B, Condensed matter.

[11]  A. Wacker,et al.  Nonequilibrium Green’s function theory for transport and gain properties of quantum cascade structures , 2002 .

[12]  G. Dehlinger,et al.  Intersubband electroluminescence from silicon-based quantum cascade structures. , 2000, Science.

[13]  S. Coppersmith,et al.  Valley Splitting Theory of SiGe/Si/SiGe Quantum Wells , 2006, cond-mat/0608229.

[14]  Avik W. Ghosh,et al.  Generalized effective-mass approach for n-type metal-oxide-semiconductor field-effect transistors on arbitrarily oriented wafers , 2004, cond-mat/0403709.

[15]  Sahand Hormoz,et al.  Terahertz quantum cascade lasers with copper metal-metal waveguides operating up to 178 K. , 2008, Optics express.

[16]  J. H. Davies,et al.  The physics of low-dimensional semiconductors , 1997 .

[17]  P. Dollfus Si/Si1−xGex heterostructures: Electron transport and field-effect transistor operation using Monte Carlo simulation , 1997 .

[18]  A. Wee,et al.  Sharp n-type doping profiles in Si/SiGe heterostructures produced by atomic hydrogen etching , 2006 .

[19]  T. Unuma,et al.  Intersubband absorption linewidth in GaAs quantum wells due to scattering by interface roughness, phonons, alloy disorder, and impurities , 2002, cond-mat/0208195.

[20]  E. Linfield,et al.  Terahertz semiconductor-heterostructure laser , 2002, Nature.

[21]  R. Kelsall,et al.  Intervalley splitting and intersubband transitions in n-type Si/SiGe quantum wells : Pseudopotential vs. effective mass calculation , 2007, 0907.4368.

[22]  Douglas J. Paul,et al.  Intersubband electroluminescence from Si/SiGe cascade emitters at terahertz frequencies , 2002 .

[23]  R. Kelsall,et al.  Intersubband carrier scattering in n - and p-Si/SiGe quantum wells with diffuse interfaces , 2008, 0908.0552.

[24]  G. Han,et al.  An n-type SiGe/Ge QC structure utilizing the deep Ge quantum well for electron at the Γ point , 2007 .

[25]  H. Kosina,et al.  Monte Carlo modeling of the electron mobility in strained Si1 xGex layers on arbitrarily oriented Si1 yGey substrates , 2004 .

[26]  D. Paul Si/SiGe heterostructures: from material and physics to devices and circuits , 2004 .

[27]  K. Driscoll,et al.  Silicon-based injection lasers using electronic intersubband transitions in the L valleys , 2006 .

[28]  V. Bublik,et al.  Calculation of the Binding Energy of GeSi Solid Solution , 1974 .

[29]  P. Harrison,et al.  Self-consistent energy balance simulations of hole dynamics in SiGe/Si THz quantum cascade structures , 2004 .

[30]  C. Jacoboni,et al.  Electron drift velocity in silicon , 1975 .

[31]  Carlo Sirtori,et al.  300 K operation of a GaAs-based quantum-cascade laser at λ≈9 μm , 2001 .

[32]  Johann Peter Reithmaier,et al.  Influence of doping density on electron dynamics in GaAs/AlGaAs quantum cascade lasers , 2006 .

[33]  A. G. Cullis,et al.  Si/SiGe quantum-cascade emitters for terahertz applications , 2003 .

[34]  T. Elsaesser,et al.  Optical dephasing of coherent intersubband transitions in a quasi-two-dimensional electron gas , 2004 .

[35]  Intersubband hole-phonon and alloy disorder scattering in SiGe quantum wells , 2001 .

[36]  First-principles calculation of alloy scattering in Ge(x)Si(1-x). , 2006, Physical review letters.

[37]  R. Kelsall,et al.  Simulated [111] Si–SiGe terahertz quantum cascade laser , 2008 .

[38]  D. Quang,et al.  Theory of the channel-width dependence of the low-temperature hole mobility in Ge-rich narrow square Si ∕ SiGe ∕ Si quantum wells , 2007 .

[39]  Vogl,et al.  Electronic-band parameters in strained Si1-xGex alloys on Si1-yGey substrates. , 1993, Physical review. B, Condensed matter.

[40]  Van de Walle Cg Band lineups and deformation potentials in the model-solid theory. , 1989 .

[41]  Qing Hu,et al.  Intrawell and interwell intersubband transitions in multiple quantum wells for far‐infrared sources , 1996 .

[42]  R. J. Bell,et al.  Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W. , 1985, Applied optics.