Vector light shift averaging in paraffin-coated alkali vapor cells.

Light shifts are an important source of noise and systematics in optically pumped magnetometers. We demonstrate that the long spin-coherence time in paraffin-coated cells leads to spatial averaging of the vector light shift over the entire cell volume. This renders the averaged vector light shift independent, under certain approximations, of the light-intensity distribution within the sensor cell. Importantly, the demonstrated averaging mechanism can be extended to other spatially varying phenomena in anti-relaxation-coated cells with long coherence times.

[1]  R. Frueholz,et al.  Inhomogeneous light shift in alkali-metal atoms , 1983 .

[2]  G. Bison,et al.  A high-sensitivity laser-pumped Mx magnetometer , 2004, physics/0406105.

[3]  D Budker,et al.  All-optical vector atomic magnetometer. , 2014, Physical review letters.

[4]  J. Picqué,et al.  Precision measurements of light shifts induced by a narrow-band GaAs laser in the 0-0 133Cs hyperfine transition , 1975 .

[5]  W. Gawlik,et al.  Sensitive optical magnetometry based on nonlinear magneto-optical rotation with amplitude-modulated light , 2007, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[6]  A. Rauschenbeutel,et al.  Dynamical polarizability of atoms in arbitrary light fields: general theory and application to cesium , 2012, 1211.2673.

[7]  Andrew G. Glen,et al.  APPL , 2001 .

[8]  Zach DeVito,et al.  Opt , 2017 .

[9]  D. Budker,et al.  Small-sized dichroic atomic vapor laser lock. , 2010, The Review of scientific instruments.

[10]  G. Wäckerle,et al.  Magnetic resonance line shapes in optical pumping and light-shift experiments in alkali atomic vapors , 1995 .

[11]  Thomas G. Walker,et al.  Diffusive suppression of AC-Stark shifts in atomic magnetometers. , 2012, Optics letters.

[12]  B. S. Mathur,et al.  Light Shifts in the Alkali Atoms , 1968 .

[13]  D. Budker,et al.  Robust, high-speed, all-optical atomic magnetometer , 2006 .

[14]  C. Wieman,et al.  Frequency-stabilized diode laser with the Zeeman shift in an atomic vapor. , 1998, Applied optics.

[15]  W. Gawlik,et al.  Enhancement of optically pumped spin orientation via spin-exchange collisions at low vapor density , 2012 .

[16]  C. cohen-tannoudji,et al.  Experimental Study of Zeeman Light Shifts in Weak Magnetic Fields , 1972 .

[17]  D. F. Kimball,et al.  Microwave transitions and nonlinear magneto-optical rotation in anti-relaxation-coated cells , 2004, physics/0408009.

[18]  A. Brillet Evaluation of the Light Shifts in an Optically Pumped Cesium Beam Frequency Standard , 1981 .

[19]  W. Gawlik,et al.  Resonant nonlinear magneto-optical effects in atoms , 2002, physics/0203077.

[20]  Z. Grujic,et al.  A sensitive and accurate atomic magnetometer based on free spin precession , 2015, The European Physical Journal D.

[21]  S. Goka,et al.  Theoretical and experimental investigation of the light shift in Ramsey coherent population trapping , 2014, 1401.3497.

[22]  A. Bloom,et al.  Optical Detection of Magnetic Resonance in Alkali Metal Vapor , 1957 .

[23]  D. Budker,et al.  A remotely interrogated all-optical Rb-87 magnetometer , 2012, 1208.1236.

[24]  Influence of magnetic-field inhomogeneity on nonlinear magneto-optical resonances , 2006, physics/0608109.

[25]  S. J. Seltzer,et al.  Synchronous optical pumping of quantum revival beats for atomic magnetometry , 2007 .

[26]  Takeshi Ikegami,et al.  Light shifts in an optically pumped Cs beam frequency standard , 1991 .

[27]  V. Semenov,et al.  About the Zeeman Light-Induced Frequency Shift of the Radio-Optical Resonance in Optically Oriented Isotopes of Alkali Metals , 2003 .

[28]  D Budker,et al.  Polarized alkali-metal vapor with minute-long transverse spin-relaxation time. , 2010, Physical review letters.

[29]  M. Arditi,et al.  Pressure, Light, and Temperature Shifts in Optical Detection of 0-0 Hyperfine Resonance of Alkali Metals , 1961 .

[30]  D. Budker,et al.  Nonlinear magneto-optical rotation with frequency-modulated light in the geophysical field range , 2006, physics/0602109.

[31]  D. Budker,et al.  A remotely interrogated all-optical 87 Rb magnetometer , 2012 .

[32]  M. Mitchell,et al.  Shot-noise-limited magnetometer with sub-picotesla sensitivity at room temperature. , 2014, The Review of scientific instruments.

[33]  Journal of the Optical Society of America , 1950, Nature.