Multiethnic meta-analysis identifies ancestry-specific and cross-ancestry loci for pulmonary function

Nearly 100 loci have been identified for pulmonary function, almost exclusively in studies of European ancestry populations. We extend previous research by meta-analyzing genome-wide association studies of 1000 Genomes imputed variants in relation to pulmonary function in a multiethnic population of 90,715 individuals of European (N = 60,552), African (N = 8429), Asian (N = 9959), and Hispanic/Latino (N = 11,775) ethnicities. We identify over 50 additional loci at genome-wide significance in ancestry-specific or multiethnic meta-analyses. Using recent fine-mapping methods incorporating functional annotation, gene expression, and differences in linkage disequilibrium between ethnicities, we further shed light on potential causal variants and genes at known and newly identified loci. Several of the novel genes encode proteins with predicted or established drug targets, including KCNK2 and CDK12. Our study highlights the utility of multiethnic and integrative genomics approaches to extend existing knowledge of the genetics of lung function and clinical relevance of implicated loci.Pulmonary function is influenced by environmental factors, lifestyle, and genetics. Here, in a multiethnic GWAS meta-analysis for pulmonary function traits, the authors identify over 50 additional genetic loci, a subset of which are specific for European, African, Asian, or Hispanic/Latino ancestry.

Lauren S. Mogil | M. Fornage | A. Uitterlinden | Victoria E. Jackson | M. Obeidat | Y. Bossé | T. Hansen | E. Burchard | V. Gudnason | D. Nickle | Albert Vernon Smith | J. Vonk | H. Im | Sam S. Oh | B. Horta | H. Boezen | T. Ahluwalia | A. Levin | K. Lohman | Yongmei Liu | S. Kritchevsky | B. Psaty | Tianyuan Wang | G. O'Connor | R. Scott | M. Province | S. London | K. Taylor | J. Rotter | C. Sitlani | T. Harris | J. Brody | J. Dupuis | T. Sofer | J. Celedón | C. Laurie | Y. Liu | D. Sin | T. Huan | M. Wojczynski | M. Cho | K. North | K. Christensen | James G. Wilson | R. Joehanes | Mi Kyeong Lee | S. Rich | C. Oldmeadow | J. Attia | E. Holliday | L. Launer | S. Heckbert | M. Feitosa | N. Franceschini | R. Noordam | T. Bartz | F. Hartwig | R. de Mutsert | Q. Duan | F. Rosendaal | D. Mook-Kanamori | A. Morrison | Wenbo Tang | S. Gharib | R. Barr | G. Brusselle | Wei-jia Gao | L. Lahousse | P. Cassano | Hieab H. H. Adams | R. Myers | R. Kaplan | M. Graff | L. Lange | D. Hu | J. Latourelle | A. Wyss | K. de Jong | W. Kim | A. Manichaikul | B. Hobbs | L. Williams | A. Menezes | F. Wehrmeister | J. Sung | Jianping Jin | H. Wheeler | L. Paternoster | Jennifer Liberto | M. Berge | M. Parker | K. M. Burkart | M. van den Berge | Gleb Kichaev | J. Sanders | R. Mutsert | B. Thyagarajan | Traci M Bartz | R. Kalhan | Jennifer A. Brody | H. Gui | Xin‐Qun Wang | S. Xiao | N. Terzikhan | Jennifer N. Nguyen | T. Bonten | M. McEvoy | Traci M. Bartz | Colleen M. Sitlani | V. Jackson | K. Jong | A. Smith | Jon G. Sanders | Xin-Qun Wang | Tian-yuan Wang | George T. O’Connor | A. Smith | A. Uitterlinden | X. Q. Wang | B. Psaty | A. Levin | T. Hansen | R. Scott | K. Taylor | H. Adams | R. Scott | K. Taylor

[1]  R. Peto,et al.  The natural history of chronic airflow obstruction. , 1977, British medical journal.

[2]  Yue Chen,et al.  Segregation analysis of two lung function indices in a random sample of young families: The humboldt family study , 1996, Genetic epidemiology.

[3]  V M Hawthorne,et al.  Impaired lung function and mortality risk in men and women: findings from the Renfrew and Paisley prospective population study , 1996, BMJ.

[4]  D. Levy,et al.  Segregation analysis of pulmonary function among families in the Framingham Study. , 1998, American journal of respiratory and critical care medicine.

[5]  C. Hirshman,et al.  Actin reorganization in airway smooth muscle cells involves Gq and Gi-2 activation of Rho. , 1999, The American journal of physiology.

[6]  J L Hankinson,et al.  Spirometric reference values from a sample of the general U.S. population. , 1999, American journal of respiratory and critical care medicine.

[7]  N. Morton Genetic epidemiology , 1997, International Journal of Obesity.

[8]  M. Province,et al.  Evidence for major genes influencing pulmonary function in the NHLBI Family Heart Study , 2000, Genetic epidemiology.

[9]  W Winkelstein,et al.  Pulmonary function is a long-term predictor of mortality in the general population: 29-year follow-up of the Buffalo Health Study. , 2000, Chest.

[10]  C. Billington,et al.  Signaling and regulation of G protein-coupled receptors in airway smooth muscle , 2003, Respiratory research.

[11]  K. Tryggvason,et al.  The Scavenger Receptor MARCO Is Required for Lung Defense against Pneumococcal Pneumonia and Inhaled Particles , 2004, The Journal of experimental medicine.

[12]  R. Hopkins,et al.  Forced expiratory volume in one second: not just a lung function test but a marker of premature death from all causes , 2007, European Respiratory Journal.

[13]  M. Daly,et al.  Estimation of the multiple testing burden for genomewide association studies of nearly all common variants , 2008, Genetic epidemiology.

[14]  F. Schmidt Meta-Analysis , 2008 .

[15]  E. Cho,et al.  The effects of sevoflurane on systemic and pulmonary inflammatory responses after cardiopulmonary bypass. , 2009, Journal of cardiothoracic and vascular anesthesia.

[16]  S. Henikoff,et al.  Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm , 2009, Nature Protocols.

[17]  P. Bork,et al.  A method and server for predicting damaging missense mutations , 2010, Nature Methods.

[18]  Inês Barroso,et al.  Genome-wide association study identifies five loci associated with lung function , 2010, Nature Genetics.

[19]  E. Regan,et al.  Genetic Epidemiology of COPD (COPDGene) Study Design , 2011, COPD.

[20]  A. Hofman,et al.  Meta-analyses of genome-wide association studies identify multiple loci associated with pulmonary function , 2010, Nature Genetics.

[21]  Florence Demenais,et al.  A large-scale, consortium-based genomewide association study of asthma. , 2010, The New England journal of medicine.

[22]  Ming D. Li,et al.  Genome-wide meta-analyses identify multiple loci associated with smoking behavior , 2010, Nature Genetics.

[23]  Eleazar Eskin,et al.  Random-effects model aimed at discovering associations in meta-analysis of genome-wide association studies. , 2011, American journal of human genetics.

[24]  Ryan D. Hernandez,et al.  Meta-analysis of Genome-wide Association Studies of Asthma In Ethnically Diverse North American Populations , 2011, Nature Genetics.

[25]  Mark I McCarthy,et al.  Genomic inflation factors under polygenic inheritance , 2011, European Journal of Human Genetics.

[26]  Christian Gieger,et al.  Genome-wide association and large scale follow-up identifies 16 new loci influencing lung function , 2011, Nature Genetics.

[27]  David C. Nickle,et al.  Lung eQTLs to Help Reveal the Molecular Underpinnings of Asthma , 2012, PLoS genetics.

[28]  Data production leads,et al.  An integrated encyclopedia of DNA elements in the human genome , 2012 .

[29]  Raymond K. Auerbach,et al.  An Integrated Encyclopedia of DNA Elements in the Human Genome , 2012, Nature.

[30]  Sina A. Gharib,et al.  Genome-Wide Joint Meta-Analysis of SNP and SNP-by-Smoking Interaction Identifies Novel Loci for Pulmonary Function , 2012, PLoS genetics.

[31]  Shane J. Neph,et al.  Systematic Localization of Common Disease-Associated Variation in Regulatory DNA , 2012, Science.

[32]  Kenny Q. Ye,et al.  An integrated map of genetic variation from 1,092 human genomes , 2012, Nature.

[33]  Eurie L. Hong,et al.  Annotation of functional variation in personal genomes using RegulomeDB , 2012, Genome research.

[34]  J. Stockman,et al.  A Large-Scale, Consortium-Based Genomewide Association Study of Asthma , 2012 .

[35]  J. Weiser,et al.  MARCO Is Required for TLR2- and Nod2-Mediated Responses to Streptococcus pneumoniae and Clearance of Pneumococcal Colonization in the Murine Nasopharynx , 2013, The Journal of Immunology.

[36]  M. Peters,et al.  Systematic identification of trans eQTLs as putative drivers of known disease associations , 2013, Nature Genetics.

[37]  W. Sellers,et al.  Targeting Wnt-driven cancer through the inhibition of Porcupine by LGK974 , 2013, Proceedings of the National Academy of Sciences.

[38]  R. Young,et al.  Super-Enhancers in the Control of Cell Identity and Disease , 2013, Cell.

[39]  E. Burchard,et al.  Childhood obesity and asthma control in the GALA II and SAGE II studies. , 2013, American journal of respiratory and critical care medicine.

[40]  Ellen T. Gelfand,et al.  The Genotype-Tissue Expression (GTEx) project , 2013, Nature Genetics.

[41]  L. Wain,et al.  GSTCD and INTS12 Regulation and Expression in the Human Lung , 2013, PloS one.

[42]  Martin T. Wells,et al.  Large-Scale Genome-Wide Association Studies and Meta-Analyses of Longitudinal Change in Adult Lung Function , 2014, PloS one.

[43]  E. Eskin,et al.  Integrating Functional Data to Prioritize Causal Variants in Statistical Fine-Mapping Studies , 2014, PLoS genetics.

[44]  Christoph Lange,et al.  Risk loci for chronic obstructive pulmonary disease: a genome-wide association study and meta-analysis. , 2014, The Lancet. Respiratory medicine.

[45]  Tanya M. Teslovich,et al.  Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility , 2014, Nature Genetics.

[46]  Pui-Yan Kwok,et al.  Gene-based association identifies SPATA13-AS1 as a pharmacogenomic predictor of inhaled short-acting beta-agonist response in multiple population groups , 2014, The Pharmacogenomics Journal.

[47]  Cesare Furlanello,et al.  A promoter-level mammalian expression atlas , 2015 .

[48]  Ryan D. Hernandez,et al.  A genome-wide association study of bronchodilator response in Latinos implicates rare variants. , 2014, The Journal of allergy and clinical immunology.

[49]  C. Wallace,et al.  Bayesian Test for Colocalisation between Pairs of Genetic Association Studies Using Summary Statistics , 2013, PLoS genetics.

[50]  Joseph K. Pickrell Joint analysis of functional genomic data and genome-wide association studies of 18 human traits , 2013, bioRxiv.

[51]  Ross M. Fraser,et al.  Defining the role of common variation in the genomic and biological architecture of adult human height , 2014, Nature Genetics.

[52]  J. Shendure,et al.  A general framework for estimating the relative pathogenicity of human genetic variants , 2014, Nature Genetics.

[53]  E. Burchard,et al.  Nocturnal asthma and the importance of race/ethnicity and genetic ancestry. , 2014, American journal of respiratory and critical care medicine.

[54]  Lorna M. Lopez,et al.  Genome-wide association analysis identifies six new loci associated with forced vital capacity , 2014, Nature Genetics.

[55]  J. Hirschhorn,et al.  Biological interpretation of genome-wide association studies using predicted gene functions , 2015, Nature Communications.

[56]  B. Pasaniuc,et al.  Leveraging Functional-Annotation Data in Trans-ethnic Fine-Mapping Studies. , 2015, American journal of human genetics.

[57]  L. Wain,et al.  Molecular mechanisms underlying variations in lung function: a systems genetics analysis. , 2015, The Lancet. Respiratory medicine.

[58]  Lorna M. Lopez,et al.  Sixteen new lung function signals identified through 1000 Genomes Project reference panel imputation , 2015, Nature Communications.

[59]  Yakir A Reshef,et al.  Partitioning heritability by functional annotation using genome-wide association summary statistics , 2015, Nature Genetics.

[60]  M. Daly,et al.  LD Score regression distinguishes confounding from polygenicity in genome-wide association studies , 2014, Nature Genetics.

[61]  David M. Evans,et al.  Integrative pathway genomics of lung function and airflow obstruction. , 2015, Human molecular genetics.

[62]  M. Daly,et al.  An Atlas of Genetic Correlations across Human Diseases and Traits , 2015, Nature Genetics.

[63]  L. Wain,et al.  Novel insights into the genetics of smoking behaviour, lung function, and chronic obstructive pulmonary disease (UK BiLEVE): a genetic association study in UK Biobank , 2015, The Lancet. Respiratory medicine.

[64]  M. Daly,et al.  Genetic and Epigenetic Fine-Mapping of Causal Autoimmune Disease Variants , 2014, Nature.

[65]  S. Y. Wang,et al.  Sevoflurane downregulates interleukin-6 and interleukin-8 levels in patients after cardiopulmonary bypass surgery: a meta-analysis. , 2015, Genetics and molecular research : GMR.

[66]  J. Soriano,et al.  Lung-Function Trajectories Leading to Chronic Obstructive Pulmonary Disease. , 2015, The New England journal of medicine.

[67]  Kaanan P. Shah,et al.  A gene-based association method for mapping traits using reference transcriptome data , 2015, Nature Genetics.

[68]  P. Pelosi,et al.  Effects of Volatile Anesthetics on Mortality and Postoperative Pulmonary and Other Complications in Patients Undergoing Surgery: A Systematic Review and Meta-analysis , 2016, Anesthesiology.

[69]  F. Martinez Early-Life Origins of Chronic Obstructive Pulmonary Disease. , 2016, The New England journal of medicine.

[70]  F. Cunningham,et al.  The Ensembl Variant Effect Predictor , 2016, Genome Biology.

[71]  Matti Pirinen,et al.  FINEMAP: efficient variable selection using summary data from genome-wide association studies , 2015, bioRxiv.

[72]  Roby Joehanes,et al.  Integrated genome-wide analysis of expression quantitative trait loci aids interpretation of genomic association studies , 2017, Genome Biology.

[73]  A. Reiner,et al.  A powerful statistical framework for generalization testing in GWAS, with application to the HCHS/SOL , 2017, Genetic epidemiology.

[74]  A. Hofman,et al.  Identification of context-dependent expression quantitative trait loci in whole blood , 2016, Nature Genetics.

[75]  J. Bazin,et al.  Sevoflurane for Sedation in Acute Respiratory Distress Syndrome. A Randomized Controlled Pilot Study , 2016, American journal of respiratory and critical care medicine.

[76]  A. Hofman,et al.  Disease variants alter transcription factor levels and methylation of their binding sites , 2016, Nature Genetics.

[77]  M. Pino-Yanes,et al.  A pathway‐based association study reveals variants from Wnt signalling genes contributing to asthma susceptibility , 2017, Clinical and experimental allergy : journal of the British Society for Allergy and Clinical Immunology.

[78]  R. Govindan,et al.  Phase I dose-escalation studies of roniciclib, a pan-cyclin-dependent kinase inhibitor, in advanced malignancies , 2017, British Journal of Cancer.

[79]  Christian Gieger,et al.  Genome-wide association analyses for lung function and chronic obstructive pulmonary disease identify new loci and potential druggable targets , 2017, Nature Genetics.

[80]  Harry J de Koning,et al.  Genetic loci associated with chronic obstructive pulmonary disease overlap with loci for lung function and pulmonary fibrosis , 2017, Nature Genetics.

[81]  L. Wain,et al.  A Genome‐Wide Association Study in Hispanics/Latinos Identifies Novel Signals for Lung Function. The Hispanic Community Health Study/Study of Latinos , 2018, American journal of respiratory and critical care medicine.

[82]  Todd L Edwards,et al.  Exploring the phenotypic consequences of tissue specific gene expression variation inferred from GWAS summary statistics , 2018, Nature Communications.

[83]  Meta-analysis of exome array data identifies six novel genetic loci for lung function , 2018, Wellcome Open Research.

[84]  Hae Kyung Im,et al.  Genetic architecture of gene expression traits across diverse populations , 2018 .

[85]  M. Delgado-Rodríguez,et al.  Systematic review and meta-analysis. , 2017, Medicina intensiva.