Is computation reversible
暂无分享,去创建一个
Michael C. Parker | Stuart D. Walker Fujitsu Laboratories of Europe Ltd. | University of Essex | M. Parker | U. Essex
[1] W. Wootters,et al. A single quantum cannot be cloned , 1982, Nature.
[2] S. Lloyd. Ultimate physical limits to computation , 1999, Nature.
[3] N. Gershenfeld. The Physics Of Information Technology , 2000 .
[4] K. Wynne. Causality and the nature of information , 2002 .
[5] L. J. Wang,et al. Gain-assisted superluminal light propagation , 2000, Nature.
[6] 朝倉 利光,et al. Dispersion, Complex Analysis and Optical Spectroscopy: Classical Theory , 1998 .
[7] R. Landauer. Computation: A Fundamental Physical View , 1987 .
[8] D. Gauthier,et al. The speed of information in a ‘fast-light’ optical medium , 2003, Nature.
[9] R. Y. Chiao,et al. Superluminal signals: causal loop paradoxes revisited , 1998 .
[10] Michael C. Parker,et al. Information transfer and Landauer’s principle , 2004 .
[11] Nicholas Chako,et al. Wave propagation and group velocity , 1960 .
[12] W. H. Zurek,et al. Thermodynamic cost of computation, algorithmic complexity and the information metric , 1989, Nature.
[13] G. Nimtz,et al. On causality proofs of superluminal barrier traversal of frequency band limited wave packets , 1994 .
[14] R. Landauer. Information is physical , 1991 .
[15] Carey,et al. Noncausal time response in frustrated total internal reflection? , 2000, Physical review letters.
[16] Sang Joon Kim,et al. A Mathematical Theory of Communication , 2006 .
[17] H. Primas. The Representation of Facts in Physical Theories , 1997 .
[18] E. Desurvire. Erbium-doped fiber amplifiers , 1994 .
[19] Partha P. Mitra,et al. Nonlinear limits to the information capacity of optical fibre communications , 2000, Nature.
[20] H. Haus. Electromagnetic Noise and Quantum Optical Measurements , 2000 .
[21] G. Agrawal. Fiber‐Optic Communication Systems , 2021 .
[22] A. Fisher,et al. Quantum computing in the solid state: the challenge of decoherence , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[23] L. Brillouin,et al. Science and information theory , 1956 .