Development of Dispersion-Optimized Photonic Crystal Fibers Based on Heavy Metal Oxide Glasses for Broadband Infrared Supercontinuum Generation with Fiber Lasers

In this work a photonic crystal fiber made of a heavy metal oxide glass with optimized dispersion profile is proposed for supercontinuum generation in a broad range of wavelengths in the near-infrared, when pumped by a mode-locked fiber-based laser. The fiber is modelled and optimal geometrical parameters are selected to achieve flat and low dispersion in the anomalous regime. Supercontinuum generation in the range of 0.76–2.40 µm, within the dynamics of 30 dB, when pumped at 1.56 µm with 400 fs–long pulses and an average power 660 mW is possible. The applicability of such fibers is also discussed.

[1]  Xiang Shen,et al.  Mid‐infrared supercontinuum covering 2.0–16 μm in a low‐loss telluride single‐mode fiber , 2017 .

[2]  Ming-Jun Li,et al.  Supercontinuum generation in optical fibers , 2007, SPIE/OSA/IEEE Asia Communications and Photonics.

[3]  Xiang Shen,et al.  1.5-14  μm midinfrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber. , 2016, Optics letters.

[4]  D. M. Atkin,et al.  All-silica single-mode optical fiber with photonic crystal cladding. , 1996, Optics letters.

[5]  M Cronin-Golomb,et al.  Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs. , 2008, Optics express.

[6]  Kunimasa Saitoh,et al.  Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion. , 2003, Optics express.

[7]  Ralph Weissleder,et al.  Near-infrared fluorescence: application to in vivo molecular imaging. , 2010, Current opinion in chemical biology.

[8]  D J Richardson,et al.  MicroStructure Element Method (MSEM): viscous flow model for the virtual draw of microstructured optical fibers. , 2015, Optics express.

[9]  Samuel Poulain,et al.  Supercontinuum generation in ZBLAN glass photonic crystal fiber with six nanobore cores. , 2016, Optics letters.

[10]  Ryszard Stepien,et al.  High contrast glasses for all-solid fibers fabrication , 2016 .

[11]  Vincent Couderc,et al.  Non-linear optical properties of chalcogenide glasses measured by Z-scan , 2000 .

[12]  Fiorenzo G Omenetto,et al.  Experimental measurement of supercontinuum coherence in highly nonlinear soft-glass photonic crystal fibers. , 2017, Optics express.

[13]  Yi Yu,et al.  1.8-10  μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power. , 2015, Optics letters.

[14]  D. Milam Review and assessment of measured values of the nonlinear refractive-index coefficient of fused silica. , 1998, Applied optics.

[15]  Dariusz Pysz,et al.  Study of SiO2-PbO-CdO-Ga2O3 glass system for mid-infrared optical elements , 2019, Journal of Non-Crystalline Solids.

[16]  A. Stentz,et al.  Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm , 2000 .

[17]  Tanya M Monro,et al.  Fabrication and supercontinuum generation in dispersion flattened bismuth microstructured optical fiber. , 2011, Optics express.

[18]  Ryszard Stepien,et al.  Experimental investigation of the nonlinear refractive index of various soft glasses dedicated for development of nonlinear photonic crystal fibers , 2017 .

[19]  J. Dudley,et al.  Supercontinuum generation in photonic crystal fiber , 2006 .

[20]  Dariusz Pysz,et al.  All-solid microstructured fiber with flat normal chromatic dispersion. , 2014, Optics letters.

[21]  Dariusz Pysz,et al.  Dispersion management in soft glass all-solid photonic crystal fibres , 2012 .

[22]  David J. Hagan,et al.  Nonlinear refraction dynamics of solvents and gases , 2016, SPIE LASE.

[23]  P. Russell,et al.  Tellurite photonic crystal fiber. , 2003, Optics express.

[24]  Dariusz Pysz,et al.  Broadband dispersion measurement of photonic crystal fibers with nanostructured core , 2015 .

[25]  John M Dudley,et al.  Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers. , 2002, Optics letters.

[26]  W. Schade,et al.  Near- and mid-infrared laser monitoring of industrial processes, environment and security applications , 2006 .

[27]  P Andrés,et al.  Octave-spanning ultraflat supercontinuum with soft-glass photonic crystal fibers. , 2009, Optics express.

[28]  Fuxi Gan,et al.  Optical properties of fluoride glasses: a review , 1995 .

[29]  Changhuei Yang,et al.  Sensitivity advantage of swept source and Fourier domain optical coherence tomography. , 2003, Optics express.

[30]  Gwenael Mazé,et al.  Mid-infrared supercontinuum generation to 4.5 microm in ZBLAN fluoride fibers by nanosecond diode pumping. , 2006, Optics letters.

[31]  J.S. Sanghera,et al.  Chalcogenide Glass-Fiber-Based Mid-IR Sources and Applications , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[32]  Ryszard Buczynski,et al.  Coherent supercontinuum generation in soft glass photonic crystal fibers , 2017 .

[33]  Irving H. Malitson,et al.  Refractive Index of Arsenic Trisulfide , 1958 .

[34]  Dariusz Pysz,et al.  Supercontinuum generation up to 2.5 μm in photonic crystal fiber made of lead-bismuth-galate glass , 2010 .

[35]  Jonathan C. Knight,et al.  Photonic crystal fibres , 2003, Nature.

[36]  Trevor M. Benson,et al.  Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre , 2014, Nature Photonics.

[37]  F. Omenetto,et al.  Spectrally smooth supercontinuum from 350 nm to 3 mum in sub-centimeter lengths of soft-glass photonic crystal fibers. , 2006, Optics express.

[38]  T.M. Monro,et al.  Mathematical Modeling of the Self-Pressurizing Mechanism for Microstructured Fiber Drawing , 2009, Journal of Lightwave Technology.