An Affine Arithmetic-Based Framework for Uncertain Power Flow and Optimal Power Flow Studies

This paper proposes a unified framework based on affine arithmetic for computing reliable enclosures of uncertain power flow (PF) and optimal power flow (OPF) solutions. The main idea is to formulate a generic mathematical programming problem under uncertainty by means of equivalent deterministic problems, and to identify the affine forms describing the data uncertainty by means of a signal processing technique based on principal components analysis. Compared to existing solution algorithms, this formulation presents greater flexibility, as it allows to find feasible solutions and inclusion of multiple equality and inequality constraints, and reduce the approximation errors to obtain better PF and OPF solution enclosures. Detailed numerical results are presented and discussed using a variety of realistic test systems, demonstrating the effectiveness of the proposed methodologies and comparing it to existing techniques for uncertain PF and OPF analysis.

[1]  Alfredo Vaccaro,et al.  A Novel Affine Arithmetic Method to Solve Optimal Power Flow Problems With Uncertainties , 2014, IEEE Transactions on Power Systems.

[2]  Chun-Lien Su Probabilistic load-flow computation using point estimate method , 2005, IEEE Transactions on Power Systems.

[3]  Hans-Peter Seidel,et al.  Sampling procedural shaders using affine arithmetic , 1998, TOGS.

[4]  P. R. Bijwe,et al.  Fuzzy Distribution Power Flow for Weakly Meshed Systems , 2006, 2007 IEEE Power Engineering Society General Meeting.

[5]  B. Bak-Jensen,et al.  Probabilistic load flow: A review , 2008, 2008 Third International Conference on Electric Utility Deregulation and Restructuring and Power Technologies.

[6]  Nicola Femia,et al.  True worst-case circuit tolerance analysis using genetic algorithms and affine arithmetic , 2000 .

[7]  Hamidreza Zareipour,et al.  Probabilistic Power Flow by Monte Carlo Simulation With Latin Supercube Sampling , 2013, IEEE Transactions on Power Systems.

[8]  De Figueiredo,et al.  Self-validated numerical methods and applications , 1997 .

[9]  V. Miranda,et al.  Fuzzy modelling of power system optimal load flow , 1991, [Proceedings] Conference Papers 1991 Power Industry Computer Application Conference.

[10]  Jorge Stolfi,et al.  Affine Arithmetic: Concepts and Applications , 2004, Numerical Algorithms.

[11]  R.N. Allan,et al.  Evaluation Methods and Accuracy in Probabilistic Load Flow Solutions , 1981, IEEE Transactions on Power Apparatus and Systems.

[12]  Wu Wenchuan,et al.  A Non-iterative Affine Arithmetic Methodology for Interval Power Flow Analysis of Transmission Network , 2013 .

[13]  Robert LIN,et al.  NOTE ON FUZZY SETS , 2014 .

[14]  M.Cs. Markót,et al.  New interval methods for constrained global optimization , 2006, Math. Program..

[15]  Jean Goubault-Larrecq,et al.  A generalization of p-boxes to affine arithmetic , 2011, Computing.

[16]  Alfredo Vaccaro,et al.  An Affine Arithmetic-Based Methodology for Reliable Power Flow Analysis in the Presence of Data Uncertainty , 2010, IEEE Transactions on Power Systems.

[17]  Fernando L. Alvarado,et al.  Interval arithmetic in power flow analysis , 1991 .

[18]  Fangxing Li,et al.  Power flow studies using principal component analysis , 2008, 2008 40th North American Power Symposium.

[19]  Kevin Tomsovic,et al.  Boundary load flow solutions , 2004 .

[20]  Claudio A. Canizares,et al.  Revisiting the power flow problem based on a mixed complementarity formulation approach , 2013 .

[21]  Antti Mutanen,et al.  Customer Classification and Load Profiling Method for Distribution Systems , 2011, IEEE Transactions on Power Delivery.

[22]  Mohammad Mohammadi,et al.  A new approach of point estimate method for probabilistic load flow , 2013 .

[23]  H. Ishibuchi,et al.  Multiobjective programming in optimization of the interval objective function , 1990 .

[24]  Qing Xiao,et al.  Solving Probabilistic Optimal Power Flow Problem Using Quasi Monte Carlo Method and Ninth-Order Polynomial Normal Transformation , 2014, IEEE Transactions on Power Systems.

[25]  Yuri G. Dolgov Developing Interval Global Optimization Algorithms on the Basis of Branch-and-Bound and Constraint Propagation Methods , 2005, Reliab. Comput..

[26]  Yu Litao Modeling of Wind Speed Uncertainty and Interval Power Flow Analysis for Wind Farms , 2009 .

[27]  C. Rakpenthai,et al.  State Estimation of Power System Considering Network Parameter Uncertainty Based on Parametric Interval Linear Systems , 2012, IEEE Transactions on Power Systems.

[28]  H. Abdi,et al.  Principal component analysis , 2010 .

[29]  Alfredo Vaccaro,et al.  A Range Arithmetic-Based Optimization Model for Power Flow Analysis Under Interval Uncertainty , 2013, IEEE Transactions on Power Systems.

[30]  George J. Cokkinides,et al.  A new probabilistic power flow analysis method , 1990 .

[31]  C. Rehtanz,et al.  Probabilistic Load Flow Calculation based on an enhanced convolution technique , 2009, 2009 IEEE Bucharest PowerTech.

[32]  M. Neher From Interval Analysis to Taylor Models-An Overview , 2005 .

[33]  Bijay Ketan Panigrahi,et al.  Optimal Power Flow with Multiple Data Uncertainties , 2013 .

[34]  Wei Sun,et al.  A novel non-probabilistic approach using interval analysis for robust design optimization , 2009 .

[35]  Weihua Zhuang,et al.  Stochastic Information Management in Smart Grid , 2014, IEEE Communications Surveys & Tutorials.

[36]  V. M. da Costa,et al.  Interval arithmetic in current injection power flow analysis , 2012 .

[37]  Pu Li,et al.  Probabilistic analysis for optimal power flow under uncertainty , 2010 .

[38]  Xuan Zeng,et al.  Robust Analog Circuit Sizing Using Ellipsoid Method and Affine Arithmetic , 2007, 2007 Asia and South Pacific Design Automation Conference.

[39]  Yih-huei Wan,et al.  Factors Relevant to Utility Integration of Intermittent Renewable Technologies , 1993 .

[40]  C. Cañizares,et al.  Probabilistic Optimal Power Flow in Electricity Markets Based on a Two-Point Estimate Method , 2006, IEEE Transactions on Power Systems.

[41]  C. Cañizares,et al.  An Affine Arithmetic method to solve the stochastic power flow problem based on a mixed complementarity formulation , 2012, 2012 IEEE Power and Energy Society General Meeting.

[42]  A. Vaccaro Affine Arithmetic for Power and Optimal Power Flow Analyses in the Presence of Uncertainties , 2015 .

[43]  G. L. Torres,et al.  Robust Optimal Power Flow Solution Using Trust Region and Interior-Point Methods , 2011, IEEE Transactions on Power Systems.

[44]  A. Vaccaro,et al.  Radial Power Flow Tolerance Analysis by Interval Constraint Propagation , 2009, IEEE Transactions on Power Systems.

[45]  Xiaohong Guan,et al.  Application of a fuzzy set method in an optimal power flow , 1995 .

[46]  Eric Goubault,et al.  An Accurate Join for Zonotopes, Preserving Affine Input/Output Relations , 2012, NSAD@SAS.

[47]  J. Aguado,et al.  Cumulant-based probabilistic optimal power flow (P-OPF) with Gaussian and gamma distributions , 2005, IEEE Transactions on Power Systems.