Fast electrical control of single electron spins in quantum dots with vanishing influence from nuclear spins.

We demonstrate fast universal electrical spin manipulation with inhomogeneous magnetic fields. With fast Rabi frequency up to 127 MHz, we leave the conventional regime of strong nuclear-spin influence and observe a spin-flip fidelity >96%, a distinct chevron Rabi pattern in the spectral-time domain, and a spin resonance linewidth limited by the Rabi frequency, not by the dephasing rate. In addition, we establish fast z rotations up to 54 MHz by directly controlling the spin phase. Our findings will significantly facilitate tomography and error correction with electron spins in quantum dots.

[1]  P.O. Boykin,et al.  Threshold error penalty for fault-tolerant quantum computation with nearest neighbor communication , 2006, IEEE Transactions on Nanotechnology.

[2]  E. Laird,et al.  A valley-spin qubit in a carbon nanotube. , 2012, Nature nanotechnology.

[3]  L. Vandersypen,et al.  Spin echo of a single electron spin in a quantum dot. , 2007, Physical review letters.

[4]  D. DiVincenzo,et al.  Quantum computation with quantum dots , 1997, cond-mat/9701055.

[5]  P. Rieger,et al.  Electron Spin Resonance , 2007, CRC Handbook of Natural Pesticides: Methods.

[6]  S. Tarucha,et al.  Triple quantum dot device designed for three spin qubits , 2010 .

[7]  A. Gossard,et al.  Rapid single-shot measurement of a singlet-triplet qubit. , 2009, Physical review letters.

[8]  S. Tarucha,et al.  The photon-assisted dynamic nuclear polarization effect in a double quantum dot , 2012 .

[9]  A. Steane Overhead and noise threshold of fault-tolerant quantum error correction , 2002, quant-ph/0207119.

[10]  W. G. van der Wiel,et al.  Coherent single electron spin control in a slanting Zeeman field. , 2005, Physical review letters.

[11]  A. Lund,et al.  Principles and applications of ESR spectroscopy , 2011 .

[12]  Andrew G. Glen,et al.  APPL , 2001 .

[13]  Todd A. Brun,et al.  Quantum Computing , 2011, Computer Science, The Hardware, Software and Heart of It.

[14]  R Brunner,et al.  Two-qubit gate of combined single-spin rotation and interdot spin exchange in a double quantum dot. , 2011, Physical review letters.

[15]  D. Awschalom,et al.  Quantum Spintronics: Engineering and Manipulating Atom-Like Spins in Semiconductors , 2013, Science.

[16]  L. Vandersypen,et al.  Universal phase shift and nonexponential decay of driven single-spin oscillations. , 2007, Physical review letters.

[17]  S. Tarucha,et al.  Electrically driven single-electron spin resonance in a slanting Zeeman field , 2008, 0805.1083.

[18]  L. Vandersypen,et al.  Supporting Online Material for Coherent Control of a Single Electron Spin with Electric Fields Materials and Methods Som Text Figs. S1 and S2 References , 2022 .

[19]  S. Tarucha,et al.  Microwave spectroscopy of a quantum-dot molecule , 1998, Nature.

[20]  W. Marsden I and J , 2012 .

[21]  J. J. Olivero,et al.  Empirical fits to the Voigt line width: A brief review , 1977 .

[22]  E. Rashba Theory of electric dipole spin resonance in quantum dots: Mean field theory with Gaussian fluctuations and beyond , 2008, 0807.2624.

[23]  D. Loss,et al.  Electric-dipole-induced spin resonance in quantum dots , 2006, cond-mat/0601674.

[24]  Adele E. Schmitz,et al.  Coherent singlet-triplet oscillations in a silicon-based double quantum dot , 2012, Nature.

[25]  M. Nielsen A simple formula for the average gate fidelity of a quantum dynamical operation [rapid communication] , 2002, quant-ph/0205035.

[26]  S. Tarucha,et al.  Current Rectification by Pauli Exclusion in a Weakly Coupled Double Quantum Dot System , 2002, Science.

[27]  Stuart A. Wolf,et al.  Spintronics : A Spin-Based Electronics Vision for the Future , 2009 .

[28]  L. Vandersypen,et al.  Locking electron spins into magnetic resonance by electron–nuclear feedback , 2009, 0902.2659.

[29]  L. P. Kouwenhoven,et al.  Spin–orbit qubit in a semiconductor nanowire , 2010, Nature.

[30]  L. Vandersypen,et al.  Spins in few-electron quantum dots , 2006, cond-mat/0610433.

[31]  Amir Yacoby,et al.  Dephasing time of GaAs electron-spin qubits coupled to a nuclear bath exceeding 200 μs , 2011 .

[32]  S. Tarucha,et al.  Allowed and forbidden transitions in artificial hydrogen and helium atoms , 2002, Nature.

[33]  E. Bakkers,et al.  Fast spin-orbit qubit in an indium antimonide nanowire. , 2012, Physical review letters.

[34]  A. Khaetskii,et al.  Electron spin decoherence in quantum dots due to interaction with nuclei. , 2002, Physical review letters.

[35]  E. Haller,et al.  Few electron double quantum dot in an isotopically purified $^{28}$Si quantum well , 2012, 1202.3237.

[36]  C. Buizert,et al.  Driven coherent oscillations of a single electron spin in a quantum dot , 2006, Nature.

[37]  S. Tarucha,et al.  Coherent manipulation of individual electron spin in a double quantum dot integrated with a micromagnet , 2010, 1002.0897.

[38]  Jacob M. Taylor,et al.  Suppressing Spin Qubit Dephasing by Nuclear State Preparation , 2008, Science.

[39]  Ronald Hanson,et al.  Coherent manipulation of single spins in semiconductors , 2008, Nature.

[40]  M. Lukin,et al.  Relaxation, dephasing, and quantum control of electron spins in double quantum dots , 2006, cond-mat/0602470.

[41]  S. Tarucha,et al.  Photon assisted tunnelling in single and coupled quantum dot systems , 1997 .

[42]  Jacob M. Taylor,et al.  Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots , 2005, Science.

[43]  S. Sarma,et al.  Spintronics: Fundamentals and applications , 2004, cond-mat/0405528.