Time reversal symmetries and zero dynamics for simple hybrid Hamiltonian control systems

This paper studies Hamel's formalism for simple hybrid mechanical control systems and explores the role of time-reversal symmetries and hybrid zero dynamics to predict the existence of periodic orbits in these control system. A time reversal symmetry in the phase-space permits us to construct a time reversible hybrid Hamiltonian system. If the Hamiltonian function describing the continuous dynamics and the impact map are invariants under a time reversal symmetry on the zero hybrid dynamics, under some mild conditions, we find sufficient conditions for the existence of periodic solutions for the class of simple hybrid Hamiltonian control systems.

[1]  S. Shankar Sastry,et al.  Model Reduction Near Periodic Orbits of Hybrid Dynamical Systems , 2013, IEEE Transactions on Automatic Control.

[2]  Jessy W. Grizzle,et al.  Nonholonomic virtual constraints for dynamic walking , 2015, 2015 54th IEEE Conference on Decision and Control (CDC).

[3]  Anthony M. Bloch,et al.  Nonlinear Dynamical Control Systems (H. Nijmeijer and A. J. van der Schaft) , 1991, SIAM Review.

[4]  J. Lamb,et al.  Time-reversal symmetry in dynamical systems: a survey , 1998 .

[5]  Aaron D. Ames,et al.  Stability of Zeno equilibria in Lagrangian hybrid systems , 2008, 2008 47th IEEE Conference on Decision and Control.

[6]  Auke Jan Ijspeert,et al.  Symmetric virtual constraints for periodic walking of legged robots , 2016, 2016 IEEE 55th Conference on Decision and Control (CDC).

[7]  Daniel E. Koditschek,et al.  Hybrid zero dynamics of planar biped walkers , 2003, IEEE Trans. Autom. Control..

[8]  A.D. Ames,et al.  Hybrid cotangent bundle reduction of simple hybrid mechanical systems with symmetry , 2006, 2006 American Control Conference.

[9]  Andrew R. Teel,et al.  Lyapunov-based versus Poincaré map analysis of the rimless wheel , 2014, 53rd IEEE Conference on Decision and Control.

[10]  Aaron D. Ames,et al.  A geometric approach to three-dimensional hipped bipedal robotic walking , 2007, 2007 46th IEEE Conference on Decision and Control.

[11]  Tad McGeer,et al.  Passive Dynamic Walking , 1990, Int. J. Robotics Res..

[12]  A. Bloch,et al.  Nonholonomic Mechanics and Control , 2004, IEEE Transactions on Automatic Control.

[13]  Seyed Hamed Razavi,et al.  Symmetry Method for Limit Cycle Walking of Legged Robots. , 2016 .

[14]  Jerrold E. Marsden,et al.  Quasivelocities and symmetries in non-holonomic systems , 2009 .

[15]  Aaron D. Ames,et al.  Lyapunov-Like Conditions for the Existence of Zeno Behavior in Hybrid and Lagrangian Hybrid Systems , 2007, 2007 46th IEEE Conference on Decision and Control.

[16]  Aaron D. Ames,et al.  Towards real-time parameter optimization for feasible nonlinear control with applications to robot locomotion , 2016, 2016 American Control Conference (ACC).

[17]  Leonardo Colombo,et al.  Quasivelocities and symmetries in simple hybrid systems , 2017, 2017 IEEE 56th Annual Conference on Decision and Control (CDC).

[18]  Tao Liu,et al.  Balance recovery control of human walking with foot slip , 2016, 2016 American Control Conference (ACC).

[19]  S. Sastry,et al.  Zeno hybrid systems , 2001 .

[20]  Leonardo Colombo,et al.  Poincaré-Bendixson Theorem for Hybrid Systems , 2018, Mathematical Control & Related Fields.

[21]  E. Westervelt,et al.  Feedback Control of Dynamic Bipedal Robot Locomotion , 2007 .

[22]  A. Isidori Nonlinear Control Systems , 1985 .

[23]  Karl Henrik Johansson,et al.  Dynamical properties of hybrid automata , 2003, IEEE Trans. Autom. Control..

[24]  Stewart D. Johnson SIMPLE HYBRID SYSTEMS , 1994 .

[25]  Franck Plestan,et al.  Asymptotically stable walking for biped robots: analysis via systems with impulse effects , 2001, IEEE Trans. Autom. Control..