A proposal of epitaxial oxide thin film structures for future oxide electronics

Abstract New epitaxial oxide thin film structures are proposed Cor future oxide electronics, particularly tor ferroelectric random access memory (FeRAM) with oxide electrodes drawing on silicon-on-insulator (SOI) and high-Tc superconductor technology. These structures have a benefical effect in device scaling and ferroelectric size effect and can he a starting point for future oxide electronics, such as high-Tc. superconducting, ferroelectric, piezoelectric and optical devices. In addition, several candidates for electrodes are discussed, considering the recent research on conductive perovskite, including high-Tc. superconductors. The basic thin film structure is epitaxially grown Ferroelectric ABO3/CeO2 or MgAl2O4/Si. As ideal structures, we propose four kinds of thin film structures based on a-axis oriented Bi layer-structured ferroelectric thin film and ferroelectric artificial superlattice and an idea for a superconductor-normal metal-superconductor (SNS) device with conductive perovskite superlattice. Besides FeRAM, these oxide multilayers fabricated on Si can be also applied to high-Tc. superconducting devices, optoelectronic devices, infrared (1R) pyro-sensors and surface acoustic wave (SAW) devices.

[1]  Shimura,et al.  Superconductivity of one-unit-cell thick YBa2Cu3O7 thin film. , 1991, Physical review letters.

[2]  Jun Hee Lee,et al.  Imprint and oxygen deficiency in (Pb,La)(Zr,Ti)O3 thin‐film capacitors with La‐Sr‐Co‐O electrodes , 1995 .

[3]  R. Harlow,et al.  Effects of stacking faults on refinement of single crystal X-ray diffraction data for Sr5Ir3O11 , 1995 .

[4]  T. Yoshitake,et al.  In‐plane anisotropic transport properties observed in epitaxial Bi2(Sr,Ca)3Cu2Ox films grown on tilted (001)SrTiO3 substrate , 1991 .

[5]  Jun Hee Lee,et al.  Scaling of ferroelectric properties in La‐Sr‐Co‐O/Pb‐La‐Zr‐Ti‐O/La‐Sr‐Co‐O capacitors , 1994 .

[6]  H. Koinuma,et al.  Atomic Control of the SrTiO3 Crystal Surface , 1994, Science.

[7]  M. C. Scott,et al.  Fatigue-free ferroelectric capacitors with platinum electrodes , 1995, Nature.

[8]  Rupp,et al.  Mechanism for the metal-insulator transition in Sr2Ir1-xRuxO4. , 1995, Physical review. B, Condensed matter.

[9]  Masayuki Suzuki Review on Future Ferroelectric Nonvolatile Memory: FeRAM , 1995 .

[10]  K. Müller,et al.  Possible highTc superconductivity in the Ba−La−Cu−O system , 1986 .

[11]  S. Miyazawa,et al.  Atomic graphoepitaxy: A growth model for c‐axis in‐plane‐aligned, a‐axis oriented YBa2Cu3Ox thin films , 1994 .

[12]  T. Sands,et al.  Oriented ferroelectric La‐Sr‐Co‐O/Pb‐La‐Zr‐Ti‐O/La‐Sr‐Co‐O heterostructures on [001] Pt/SiO2 Si substrates using a bismuth titanate template layer , 1994 .

[13]  S. Komatsu,et al.  Ferroelectric properties in epitaxially grown BaxSr1−xTiO3 thin films , 1995 .

[14]  T. Noh,et al.  Leakage current behaviors of epitaxial and preferentially oriented Bi4Ti3O12 thin films grown on La0.5Sr0.5CoO3 bottom electrodes , 1995 .

[15]  Hidekazu Tanaka,et al.  FORMATION OF ARTIFICIAL BATIO3/SRTIO3 SUPERLATTICES USING PULSED LASER DEPOSITION AND THEIR DIELECTRIC PROPERTIES , 1994 .

[16]  J. Mannhart,et al.  Sr2RuO4: A metallic substrate for the epitaxial growth of YBa2Cu3O7−δ , 1992 .

[17]  K. Iijima,et al.  Epitaxial growth and dielectric properties of BaTiO3 films on Pt electrodes by reactive evaporation , 1994 .

[18]  T. Sands,et al.  Ferroelectric La‐Sr‐Co‐O/Pb‐Zr‐Ti‐O/La‐Sr‐Co‐O heterostructures on silicon via template growth , 1993 .

[19]  H. Tuller,et al.  Thermogravimetric Analysis and Defect Models of the Oxygen Nonstoichiometry in La2–xSrxCuO4–y , 1994 .

[20]  H. Koinuma,et al.  Topmost surface analysis of SrTiO3 (001) by coaxial impact‐collision ion scattering spectroscopy , 1994 .

[21]  S. Desu,et al.  Novel fatigue-free layered structure ferroelectric thin films , 1995 .

[22]  C. Araujo,et al.  Analysis of switching transients in KNO3 ferroelectric memories , 1986 .

[23]  Tseung-Yuen Tseng,et al.  Growth and ferroelectricity of epitaxial‐like BaTiO3 films on single‐crystal MgO, SrTiO3, and silicon substrates synthesized by pulsed laser deposition , 1995 .

[24]  F. Lichtenberg,et al.  Superconductivity in a layered perovskite without copper , 1994, Nature.

[25]  Toshimasa Suzuki,et al.  Fabrication of Barium Titanate/Strontium Titanate Artificial Superlattice by Atomic Layer Epitaxy , 1994 .

[26]  Wang,et al.  Structural and magnetic studies of Sr2IrO4. , 1994, Physical review. B, Condensed matter.

[27]  K. Iijima,et al.  Epitaxial growth of YBa2Cu3O7−x thin films on (110) SrTiO3 single crystals by activated reactive evaporation , 1988 .

[28]  Kazushi Amanuma,et al.  Preparation and ferroelectric properties of SrBi2Ta2O9 thin films , 1995 .

[29]  Kenji Uchino,et al.  Dependence of the Crystal Structure on Particle Size in Barium Titanate , 1989 .

[30]  Zhong,et al.  Surface and size effects on ferroelectric films with domain structures. , 1995, Physical review. B, Condensed matter.

[31]  G. Demazeau,et al.  High Oxygen Pressure and the Preparation of New Iridium (VI) Oxides with Perovskite Structure: Sr2MIrO6 (M = Ca, Mg) , 1995 .