Improved interlaminar fracture toughness of carbon fiber/epoxy composites by a combination of extrinsic and intrinsic multiscale toughening mechanisms

[1]  Shouzheng Sun,et al.  Review of methods for enhancing interlaminar mechanical properties of fiber-reinforced thermoplastic composites: Interfacial modification, nano-filling and forming technology , 2022, Composites Science and Technology.

[2]  Mingzhen Zhao,et al.  Well‐dispersed poly(ether‐ether‐ketone)/multi‐walled carbon nanotubes nanocomposite for harsh environment applications , 2022, Journal of Applied Polymer Science.

[3]  Lvtao Zhu,et al.  A Short Review of Recent Progress in Improving the Fracture Toughness of FRP Composites Using Short Fibers , 2022, Sustainability.

[4]  Constantinos Soutis,et al.  On mode-I and mode-II interlaminar crack migration and R-curves in carbon/epoxy laminates with hybrid toughening via core-shell-rubber particles and thermoplastic micro-fibre veils , 2022, Composites Part B: Engineering.

[5]  Y. Qiu,et al.  Effect of polymer nanoparticle morphology on fracture toughness enhancement of carbon fiber reinforced epoxy composites , 2022, Composites Part B: Engineering.

[6]  L. Ren,et al.  A feather-inspired interleaf for enhanced interlaminar fracture toughness of carbon fiber reinforced polymer composites , 2022, Composites Part B: Engineering.

[7]  S. Kim,et al.  Outstanding Strengthening and Toughening Behavior of 3D‐Printed Fiber‐Reinforced Composites Designed by Biomimetic Interfacial Heterogeneity , 2021, Advanced science.

[8]  M. Naebe,et al.  Organophosphorus-Functionalized Zirconium-Based Metal–Organic Framework Nanostructures for Improved Mechanical and Flame Retardant Polymer Nanocomposites , 2021, ACS Applied Nano Materials.

[9]  Xiaoping Yang,et al.  Constructing a Rigid-and-Flexible Twin-Stage Gradient Interphase through Starlike Copolymer Coating on Carbon Fibers: A Route for Enhancing Interfacial Properties of Composites. , 2021, ACS applied materials & interfaces.

[10]  Constantinos Soutis,et al.  Progress in interlaminar toughening of aerospace polymer composites using particles and non-woven veils , 2021, The Aeronautical Journal.

[11]  T. Pardoen,et al.  Synergy between Phenoxy and CSR Tougheners on the Fracture Toughness of Highly Cross-Linked Epoxy-Based Composites , 2021, Polymers.

[12]  Yingjie Zhu,et al.  Bioinspired flexible, high-strength, and versatile hydrogel with the fiberboard-and-mortar hierarchically ordered structure , 2021, Nano Research.

[13]  R. Ritchie Toughening materials: enhancing resistance to fracture , 2021, Philosophical Transactions of the Royal Society A.

[14]  Yaqing Liu,et al.  Bio-inspired, epoxy-based lamellar composites with superior fracture toughness by delignified wood scaffold , 2021 .

[15]  S. S. Kumaran,et al.  Effect of silica nanoparticles on mechanical and thermal properties of intra-inter ply hybrid laminated composites , 2021, Materials Research Express.

[16]  Mingzhen Zhao,et al.  Well‐dispersed poly(ether‐ether‐ketone)/ multi‐walled carbon nanotube nanocomposites prepared via a simple solution mixing approach , 2021 .

[17]  Yunfu Ou,et al.  Understanding interlaminar toughening of unidirectional CFRP laminates with carbon nanotube veils , 2020, 2012.00071.

[18]  Xujing Yang,et al.  Improved mode Ⅰ interlaminar fracture toughness of random polypropylene composite laminate via multiscale reinforcing formed by introducing functional nanofibrillated cellulose , 2020 .

[19]  Lixin Wu,et al.  Isotropic stereolithography resin toughened by core-shell particles , 2020 .

[20]  L. Giorgini,et al.  Rubbery nanofibrous interleaves enhance fracture toughness and damping of CFRP laminates , 2020, Materials & Design.

[21]  Hao Wang,et al.  Current status of carbon fibre and carbon fibre composites recycling , 2020 .

[22]  Yaqing Liu,et al.  Mechanical properties of foam sandwich with chopped‐glass‐fiber/carbon nanotube reinforced hierarchical structure interlayer , 2020, Polymer Composites.

[23]  Nathan K. Fritz,et al.  Interlaminar to intralaminar mode I and II crack bifurcation due to aligned carbon nanotube reinforcement of aerospace-grade advanced composites , 2020 .

[24]  Nancy J. Currie-Gregg,et al.  3D printing of in-situ curing thermally insulated thermosets , 2019, Manufacturing Letters.

[25]  Frances Y. Su,et al.  Multiscale Toughening Mechanisms in Biological Materials and Bioinspired Designs , 2019, Advanced materials.

[26]  Xiaozhi Hu,et al.  Improving impact resistance and residual compressive strength of carbon fibre composites using un-bonded non-woven short aramid fibre veil , 2019, Composites Part A: Applied Science and Manufacturing.

[27]  C. Ma,et al.  Study on Properties of Interlayer Short Fiber Reinforced Carbon Fiber/Epoxy Composite Laminates , 2019, Journal of Physics: Conference Series.

[28]  A. Ravindran,et al.  Synergistic delamination toughening of composites using multi-scale carbon reinforcements , 2019, Composites Part B: Engineering.

[29]  A. Ravindran,et al.  Synergistic mode II delamination toughening of composites using multi-scale carbon-based reinforcements , 2019, Composites Part A: Applied Science and Manufacturing.

[30]  A. Studart,et al.  Hierarchical Toughening of Nacre‐Like Composites , 2019, Advanced Functional Materials.

[31]  C. Macosko,et al.  Can nanoparticle toughen fiber-reinforced thermosetting polymers? , 2018, Journal of Materials Science.

[32]  Kamran Ghorbani,et al.  Fracture and fatigue behaviour of epoxy nanocomposites containing 1-D and 2-D nanoscale carbon fillers , 2018, Engineering Fracture Mechanics.

[33]  A. Bismarck,et al.  Increasing carbon fiber composite strength with a nanostructured "brick-and-mortar" interphase , 2018 .

[34]  A. Ravindran,et al.  The electric field alignment of short carbon fibres to enhance the toughness of epoxy composites , 2018 .

[35]  B. Liu,et al.  Failure modes and strength prediction of thin ply CFRP angle-ply laminates , 2017 .

[36]  K. Masania,et al.  Core-shell rubber nanoparticle reinforcement and processing of high toughness fast-curing epoxy composites , 2017 .

[37]  Y. Mai,et al.  Delamination toughening of carbon fiber/epoxy laminates by hierarchical carbon nanotube-short carbon fiber interleaves , 2017 .

[38]  Y. Mai,et al.  Improvement of interlaminar fracture toughness in carbon fiber/epoxy composites with carbon nanotubes/polysulfone interleaves , 2017 .

[39]  A. Ravindran,et al.  Multi-scale toughening of fibre composites using carbon nanofibres and z-pins , 2016 .

[40]  Y. Mai,et al.  Temperature effect on nano-rubber toughening in epoxy and epoxy/carbon fiber laminated composites , 2016 .

[41]  T. M. Young,et al.  Inclusion of a thermoplastic phase to improve impact and post-impact performances of carbon fibre reinforced thermosetting composites — A review , 2015 .

[42]  Chun H. Wang,et al.  Improving the Toughness and Electrical Conductivity of Epoxy Nanocomposites by using Aligned Carbon Nanofibres , 2015 .

[43]  Ning Hu,et al.  Interlaminar mechanical properties of carbon fiber reinforced plastic laminates modified with graphene oxide interleaf , 2015 .

[44]  Xu Guo,et al.  Short-aramid-fiber toughening of epoxy adhesive joint between carbon fiber composites and metal substrates with different surface morphology , 2015 .

[45]  A. Ivankovic,et al.  Effect of core–shell rubber (CSR) nano-particles on mechanical properties and fracture toughness of an epoxy polymer , 2015 .

[46]  L. Ye,et al.  Interlaminar fracture toughness and CAI strength of fibre-reinforced composites with nanoparticles - A review , 2013 .

[47]  R. Ritchie The conflicts between strength and toughness. , 2011, Nature materials.

[48]  R. Ritchie,et al.  On the Fracture Toughness of Advanced Materials , 2009 .

[49]  R. Ritchie,et al.  Tough, Bio-Inspired Hybrid Materials , 2008, Science.

[50]  R. Ritchie,et al.  Bioinspired Structural Materials , 2008, Science.

[51]  R. Ritchie Mechanisms of fatigue-crack propagation in ductile and brittle solids , 1999 .

[52]  A. Clearfield,et al.  Epoxy Nanocomposites Based on the Synthetic α-Zirconium Phosphate Layer Structure , 2004 .