Time Series Data Mining Methods: A Review

[1]  Walid G. Aref,et al.  Periodicity detection in time series databases , 2005, IEEE Transactions on Knowledge and Data Engineering.

[2]  Man Hon Wong,et al.  Fast time-series searching with scaling and shifting , 1999, PODS '99.

[3]  Philip K. Chan,et al.  Modeling multiple time series for anomaly detection , 2005, Fifth IEEE International Conference on Data Mining (ICDM'05).

[4]  Lizhe Wang,et al.  Sparse representation for remote sensing images of long time sequences , 2014, 2014 IEEE Geoscience and Remote Sensing Symposium.

[5]  Christos Faloutsos,et al.  FTW: fast similarity search under the time warping distance , 2005, PODS.

[6]  C. S. Wallace,et al.  Minimum Message Length Segmentation , 1998, PAKDD.

[7]  Jiawei Han,et al.  Mining Segment-Wise Periodic Patterns in Time-Related Databases , 1998, KDD.

[8]  Guilherme De A. Barreto,et al.  Time Series Prediction with the Self-Organizing Map: A Review , 2007, Perspectives of Neural-Symbolic Integration.

[9]  Christos Faloutsos,et al.  Efficient retrieval of similar time sequences under time warping , 1998, Proceedings 14th International Conference on Data Engineering.

[10]  A. Udalski The Optical Gravitational Lensing Experiment . Real Time Data Analysis Systems in the OGLE-III Survey , 2004 .

[11]  Anthony K. H. Tung,et al.  SpADe: On Shape-based Pattern Detection in Streaming Time Series , 2007, 2007 IEEE 23rd International Conference on Data Engineering.

[12]  Robert P. W. Duin,et al.  Novelty Detection Using Self-Organizing Maps , 1997, ICONIP.

[13]  De Wu,et al.  A Piecewise Linear Representation Method of Time Series Based on Feature Points , 2007, KES.

[14]  Eamonn J. Keogh,et al.  Experimental comparison of representation methods and distance measures for time series data , 2010, Data Mining and Knowledge Discovery.

[15]  S. Chiba,et al.  Dynamic programming algorithm optimization for spoken word recognition , 1978 .

[16]  Lei Chen,et al.  Robust and fast similarity search for moving object trajectories , 2005, SIGMOD '05.

[17]  Hans-Peter Kriegel,et al.  Similarity Search in Multimedia Time Series Data Using Amplitude-Level Features , 2008, MMM.

[18]  Piotr Fryzlewicz,et al.  Multiscale and multilevel technique for consistent segmentation of nonstationary time series , 2016, 1611.09727.

[19]  Jignesh M. Patel,et al.  An efficient and accurate method for evaluating time series similarity , 2007, SIGMOD '07.

[20]  Anne M. Denton,et al.  Pattern-based time-series subsequence clustering using radial distribution functions , 2009, Knowledge and Information Systems.

[21]  V. Niennattrakul,et al.  Parameter-free motif discovery for time series data , 2012, 2012 9th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology.

[22]  Georg M. Goerg Forecastable Component Analysis , 2013, ICML.

[23]  Christos Faloutsos,et al.  Fast Time Sequence Indexing for Arbitrary Lp Norms , 2000, VLDB.

[24]  Frédéric H. Pighin,et al.  Unsupervised learning for speech motion editing , 2003, SCA '03.

[25]  Dimitrios Gunopulos,et al.  Finding Similar Time Series , 1997, PKDD.

[26]  Zbigniew Michalewicz,et al.  Time Series Forecasting for Dynamic Environments: The DyFor Genetic Program Model , 2007, IEEE Transactions on Evolutionary Computation.

[27]  D. Seborg,et al.  Clustering multivariate time‐series data , 2005 .

[28]  Tak-Chung Fu,et al.  Pattern discovery from stock time series using self-organizing maps , 2016 .

[29]  Rakesh Agrawal,et al.  Privacy-preserving data mining , 2000, SIGMOD 2000.

[30]  Walid G. Aref,et al.  Incremental, online, and merge mining of partial periodic patterns in time-series databases , 2004, IEEE Transactions on Knowledge and Data Engineering.

[31]  Eamonn J. Keogh,et al.  A symbolic representation of time series, with implications for streaming algorithms , 2003, DMKD '03.

[32]  Donald J. Berndt,et al.  Using Dynamic Time Warping to Find Patterns in Time Series , 1994, KDD Workshop.

[33]  Yanchang Zhao,et al.  Generalized dimension-reduction framework for recent-biased time series analysis , 2006, IEEE Transactions on Knowledge and Data Engineering.

[34]  Manish Marwah,et al.  Visual exploration of frequent patterns in multivariate time series , 2012, Inf. Vis..

[35]  Faicel Chamroukhi,et al.  Joint segmentation of multivariate time series with hidden process regression for human activity recognition , 2013, Neurocomputing.

[36]  Eamonn J. Keogh,et al.  Exact indexing of dynamic time warping , 2002, Knowledge and Information Systems.

[37]  Eamonn J. Keogh,et al.  Detecting time series motifs under uniform scaling , 2007, KDD '07.

[38]  Dimitrios Gunopulos,et al.  A Wavelet-Based Anytime Algorithm for K-Means Clustering of Time Series , 2003 .

[39]  Lukasz Golab,et al.  Issues in data stream management , 2003, SGMD.

[40]  Juan José Rodríguez Diez,et al.  Interval and dynamic time warping-based decision trees , 2004, SAC '04.

[41]  Xiaozhe Wang,et al.  Characteristic-Based Clustering for Time Series Data , 2006, Data Mining and Knowledge Discovery.

[42]  Tak-Chung Fu,et al.  Mining of Stock Data: Intra- and Inter-Stock Pattern Associative Classification , 2006, DMIN.

[43]  Irfan A. Essa,et al.  Detecting Subdimensional Motifs: An Efficient Algorithm for Generalized Multivariate Pattern Discovery , 2007, Seventh IEEE International Conference on Data Mining (ICDM 2007).

[44]  Tak-chung Fu,et al.  Flexible time series pattern matching based on perceptually important points , 2001 .

[45]  Eamonn J. Keogh,et al.  A Novel Bit Level Time Series Representation with Implication of Similarity Search and Clustering , 2005, PAKDD.

[46]  Amir F. Atiya,et al.  An Empirical Comparison of Machine Learning Models for Time Series Forecasting , 2010 .

[47]  Hailin Li,et al.  Asynchronism-based principal component analysis for time series data mining , 2014, Expert Syst. Appl..

[48]  Jason R. Chen Making subsequence time series clustering meaningful , 2005, Fifth IEEE International Conference on Data Mining (ICDM'05).

[49]  Dimitrios Gunopulos,et al.  Mining Time Series Data , 2005, Data Mining and Knowledge Discovery Handbook.

[50]  José Carlos Príncipe,et al.  Spatio-temporal self-organizing feature maps , 1996, Proceedings of International Conference on Neural Networks (ICNN'96).

[51]  Eamonn J. Keogh,et al.  Towards parameter-free data mining , 2004, KDD.

[52]  G. F. Bryant,et al.  A new algorithm for segmenting data from time series , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[53]  Xin Chen,et al.  A compression algorithm for DNA sequences and its applications in genome comparison , 2000, RECOMB '00.

[54]  T. Warren Liao,et al.  Clustering of time series data - a survey , 2005, Pattern Recognit..

[55]  Eamonn J. Keogh,et al.  Clustering of time-series subsequences is meaningless: implications for previous and future research , 2004, Knowledge and Information Systems.

[56]  Eamonn J. Keogh,et al.  Searching and Mining Trillions of Time Series Subsequences under Dynamic Time Warping , 2012, KDD.

[57]  F. Itakura,et al.  Minimum prediction residual principle applied to speech recognition , 1975 .

[58]  Piotr Indyk,et al.  Identifying Representative Trends in Massive Time Series Data Sets Using Sketches , 2000, VLDB.

[59]  Alberto O. Mendelzon,et al.  Similarity-based queries for time series data , 1997, SIGMOD '97.

[60]  Eamonn J. Keogh,et al.  Finding surprising patterns in a time series database in linear time and space , 2002, KDD.

[61]  Teuvo Kohonen,et al.  The self-organizing map , 1990 .

[62]  Eamonn J. Keogh,et al.  Everything you know about Dynamic Time Warping is Wrong , 2004 .

[63]  Kuniaki Uehara,et al.  Discovery of Time-Series Motif from Multi-Dimensional Data Based on MDL Principle , 2005, Machine Learning.

[64]  Sean M. Polyn,et al.  Beyond mind-reading: multi-voxel pattern analysis of fMRI data , 2006, Trends in Cognitive Sciences.

[65]  Jignesh M. Patel,et al.  Efficient and Accurate Discovery of Patterns in Sequence Data Sets , 2011, IEEE Transactions on Knowledge and Data Engineering.

[66]  Lloyd Allison,et al.  Change-Point Estimation Using New Minimum Message Length Approximations , 2002, PRICAI.

[67]  Li Wei,et al.  Assumption-Free Anomaly Detection in Time Series , 2005, SSDBM.

[68]  Xiao Liu,et al.  Time-Series Pattern Based Effective Noise Generation for Privacy Protection on Cloud , 2015, IEEE Transactions on Computers.

[69]  Graham Cormode,et al.  Conquering the Divide: Continuous Clustering of Distributed Data Streams , 2007, 2007 IEEE 23rd International Conference on Data Engineering.

[70]  Irfan A. Essa,et al.  Discovering Multivariate Motifs using Subsequence Density Estimation and Greedy Mixture Learning , 2007, AAAI.

[71]  John F. Roddick,et al.  A Survey of Temporal Knowledge Discovery Paradigms and Methods , 2002, IEEE Trans. Knowl. Data Eng..

[72]  Ruzena Bajcsy,et al.  Segmentation versus object representation—are they separable? , 1989 .

[73]  Philip S. Yu,et al.  On Periodicity Detection and Structural Periodic Similarity , 2005, SDM.

[74]  Eamonn J. Keogh,et al.  Relevance feedback retrieval of time series data , 1999, SIGIR '99.

[75]  Dimitrios Gunopulos,et al.  Indexing multi-dimensional time-series with support for multiple distance measures , 2003, KDD '03.

[76]  Renée J. Miller,et al.  Similarity search over time-series data using wavelets , 2002, Proceedings 18th International Conference on Data Engineering.

[77]  Eamonn J. Keogh,et al.  Scaling up dynamic time warping for datamining applications , 2000, KDD '00.

[78]  Milos Hauskrecht,et al.  A temporal pattern mining approach for classifying electronic health record data , 2013, ACM Trans. Intell. Syst. Technol..

[79]  William Remus,et al.  Neural Network Models for Time Series Forecasts , 1996 .

[80]  Joshua M. Stuart,et al.  MICROARRAY EXPERIMENTS : APPLICATION TO SPORULATION TIME SERIES , 1999 .

[81]  Richard J. Povinelli,et al.  DATA MINING OF MULTIPLE NONSTATIONARY TIME SERIES , 1999 .

[82]  Witold Pedrycz,et al.  Anomaly Detection and Characterization in Spatial Time Series Data: A Cluster-Centric Approach , 2014, IEEE Transactions on Fuzzy Systems.

[83]  Zoran Nikoloski,et al.  Network-Based Segmentation of Biological Multivariate Time Series , 2013, PloS one.

[84]  János Abonyi,et al.  On-line detection of homogeneous operation ranges by dynamic principal component analysis based time-series segmentation , 2012 .

[85]  Eamonn J. Keogh,et al.  iSAX: indexing and mining terabyte sized time series , 2008, KDD.

[86]  Hui Ding,et al.  Querying and mining of time series data: experimental comparison of representations and distance measures , 2008, Proc. VLDB Endow..

[87]  James P. Crutchfield,et al.  An Algorithm for Pattern Discovery in Time Series , 2002, ArXiv.

[88]  Shonali Krishnaswamy,et al.  Mining data streams: a review , 2005, SGMD.

[89]  Nick Roussopoulos,et al.  Compressing historical information in sensor networks , 2004, SIGMOD '04.

[90]  Franklin Allen,et al.  Using genetic algorithms to find technical trading rules , 1999 .

[91]  Dejun Mu,et al.  A Fast Approach to K-means Clustering for Time Series Based on Symbolic Representation , 2012 .

[92]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[93]  Gareth J. Janacek,et al.  A Bit Level Representation for Time Series Data Mining with Shape Based Similarity , 2006, Data Mining and Knowledge Discovery.

[94]  Xiang Lian,et al.  Pattern Matching over Cloaked Time Series , 2008, 2008 IEEE 24th International Conference on Data Engineering.

[95]  Mário A. T. Figueiredo,et al.  Similarity-Based Clustering of Sequences Using Hidden Markov Models , 2003, MLDM.

[96]  Shehzad Khalid,et al.  Classifying spatiotemporal object trajectories using unsupervised learning in the coefficient feature space , 2006, Multimedia Systems.

[97]  Cyrus Shahabi,et al.  On the stationarity of multivariate time series for correlation-based data analysis , 2005, Fifth IEEE International Conference on Data Mining (ICDM'05).

[98]  Dimitris Kugiumtzis,et al.  A prediction scheme using perceptually important points and dynamic time warping , 2014, Expert Syst. Appl..

[99]  Manuele Bicego,et al.  A Hidden Markov Model-Based Approach to Sequential Data Clustering , 2002, SSPR/SPR.

[100]  Jiawei Han,et al.  Efficient mining of partial periodic patterns in time series database , 1999, Proceedings 15th International Conference on Data Engineering (Cat. No.99CB36337).

[101]  Jar-Long Wang,et al.  Stock market trading rule discovery using two-layer bias decision tree , 2006, Expert Syst. Appl..

[102]  Frank Klawonn,et al.  Fuzzy Clustering of Short Time-Series and Unevenly Distributed Sampling Points , 2003, IDA.

[103]  Christos Faloutsos,et al.  Efficient Similarity Search In Sequence Databases , 1993, FODO.

[104]  Eamonn J. Keogh,et al.  An online algorithm for segmenting time series , 2001, Proceedings 2001 IEEE International Conference on Data Mining.

[105]  Ahmed Kattan,et al.  Time-series event-based prediction: An unsupervised learning framework based on genetic programming , 2015, Inf. Sci..

[106]  Eamonn J. Keogh,et al.  Scaling and time warping in time series querying , 2005, The VLDB Journal.

[107]  Eamonn J. Keogh,et al.  Disk aware discord discovery: finding unusual time series in terabyte sized datasets , 2007, Seventh IEEE International Conference on Data Mining (ICDM 2007).

[108]  Joan Serrà,et al.  Particle swarm optimization for time series motif discovery , 2015, Knowl. Based Syst..

[109]  Padhraic Smyth,et al.  Deformable Markov model templates for time-series pattern matching , 2000, KDD '00.

[110]  Hans-Peter Kriegel,et al.  Similarity Search on Time Series Based on Threshold Queries , 2006, EDBT.

[111]  Carlos Agón,et al.  Time-series data mining , 2012, CSUR.

[112]  M. Ohsaki A Rule Discovery Support System for Sequential Medical Data,-In the Case Study of a Chronic Hepatitis Dataset- , 2002 .

[113]  Dimitrios Gunopulos,et al.  Iterative Incremental Clustering of Time Series , 2004, EDBT.

[114]  Philip Chan,et al.  Toward accurate dynamic time warping in linear time and space , 2007, Intell. Data Anal..

[115]  Mrinalini Shah,et al.  Fuzzy based trend mapping and forecasting for time series data , 2012, Expert Syst. Appl..

[116]  Jonathan J. Oliver,et al.  Bayesian Approaches to Segmenting A Simple Time Series , 1997 .

[117]  Eamonn J. Keogh,et al.  Time Series Epenthesis: Clustering Time Series Streams Requires Ignoring Some Data , 2011, 2011 IEEE 11th International Conference on Data Mining.

[118]  Jai E. Jung,et al.  Privacy-Preserving Discovery of Topic-Based Events from Social Sensor Signals: An Experimental Study on Twitter , 2014, TheScientificWorldJournal.

[119]  Eamonn J. Keogh,et al.  A Simple Dimensionality Reduction Technique for Fast Similarity Search in Large Time Series Databases , 2000, PAKDD.

[120]  Eamonn J. Keogh,et al.  Iterative Deepening Dynamic Time Warping for Time Series , 2002, SDM.

[121]  Amaury Lendasse,et al.  Methodology for long-term prediction of time series , 2007, Neurocomputing.

[122]  Eamonn J. Keogh,et al.  Locally adaptive dimensionality reduction for indexing large time series databases , 2001, SIGMOD '01.

[123]  Tim Oates,et al.  Visualizing Variable-Length Time Series Motifs , 2012, SDM.

[124]  James T. Kwok,et al.  Rival penalized competitive learning for model-based sequence clustering , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[125]  Hagit Shatkay,et al.  Approximate queries and representations for large data sequences , 1996, Proceedings of the Twelfth International Conference on Data Engineering.

[126]  Tomasz Imielinski,et al.  Mining association rules between sets of items in large databases , 1993, SIGMOD Conference.

[127]  Bin Li,et al.  Using fuzzy neural network clustering algorithm in the symbolization of time series , 2000, IEEE APCCAS 2000. 2000 IEEE Asia-Pacific Conference on Circuits and Systems. Electronic Communication Systems. (Cat. No.00EX394).

[128]  Zehong Yang,et al.  Intelligent stock trading system by turning point confirming and probabilistic reasoning , 2008, Expert Syst. Appl..

[129]  Jieping Ye,et al.  Generalized Low Rank Approximations of Matrices , 2005, Machine Learning.

[130]  Ben Shneiderman,et al.  Dynamic query tools for time series data sets: timebox widgets for interactive exploration , 2004 .

[131]  Reda Alhajj,et al.  Discovering all frequent trends in time series , 2004 .

[132]  Zhihua Wang,et al.  Fast algorithms for time series with applications to finance, physics, music, biology, and other suspects , 2004, SIGMOD '04.

[133]  Ambuj K. Singh,et al.  Similarity searching for multi-attribute sequences , 2002, Proceedings 14th International Conference on Scientific and Statistical Database Management.

[134]  Liang Wang,et al.  Structure-Based Statistical Features and Multivariate Time Series Clustering , 2007, Seventh IEEE International Conference on Data Mining (ICDM 2007).

[135]  Marina Vannucci,et al.  A spatio-temporal nonparametric Bayesian variable selection model of fMRI data for clustering correlated time courses , 2014, NeuroImage.

[136]  Fabian Mörchen,et al.  Optimizing time series discretization for knowledge discovery , 2005, KDD '05.

[137]  Eamonn J. Keogh,et al.  Rare Time Series Motif Discovery from Unbounded Streams , 2014, Proc. VLDB Endow..

[138]  Heikki Mannila,et al.  Time series segmentation for context recognition in mobile devices , 2001, Proceedings 2001 IEEE International Conference on Data Mining.

[139]  Eamonn J. Keogh,et al.  Ensemble-index: a new approach to indexing large databases , 2001, KDD '01.

[140]  Nikola K. Kasabov,et al.  DENFIS: dynamic evolving neural-fuzzy inference system and its application for time-series prediction , 2002, IEEE Trans. Fuzzy Syst..

[141]  Christos Faloutsos,et al.  Efficiently supporting ad hoc queries in large datasets of time sequences , 1997, SIGMOD '97.

[142]  Pierre-François Marteau,et al.  Time Warp Edit Distance with Stiffness Adjustment for Time Series Matching , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[143]  Dimitrios Gunopulos,et al.  Identifying similarities, periodicities and bursts for online search queries , 2004, SIGMOD '04.

[144]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[145]  Richard J. Povinelli,et al.  Time series classification using Gaussian mixture models of reconstructed phase spaces , 2004, IEEE Transactions on Knowledge and Data Engineering.

[146]  Eamonn J. Keogh,et al.  Mining motifs in massive time series databases , 2002, 2002 IEEE International Conference on Data Mining, 2002. Proceedings..

[147]  Jessica Lin,et al.  Finding Motifs in Time Series , 2002, KDD 2002.

[148]  Claudia Plant,et al.  Interaction-Based Clustering of Multivariate Time Series , 2009, 2009 Ninth IEEE International Conference on Data Mining.

[149]  Nikola K. Kasabov,et al.  Evolving fuzzy neural networks for supervised/unsupervised online knowledge-based learning , 2001, IEEE Trans. Syst. Man Cybern. Part B.

[150]  Russell L. Purvis,et al.  Stock market trading rule discovery using technical charting heuristics , 2002, Expert Syst. Appl..

[151]  Dimitrios Gunopulos,et al.  Discovering similar multidimensional trajectories , 2002, Proceedings 18th International Conference on Data Engineering.

[152]  Abraham Kandel,et al.  Knowledge discovery in time series databases , 2001, IEEE Trans. Syst. Man Cybern. Part B.

[153]  Jimeng Sun,et al.  Streaming Pattern Discovery in Multiple Time-Series , 2005, VLDB.

[154]  Tak-Chung Fu,et al.  Financial Time Series Segmentation based on Specialized Binary Tree Representation , 2006, International Conference on Data Mining.

[155]  Eamonn J. Keogh,et al.  Visualizing and Discovering Non-Trivial Patterns in Large Time Series Databases , 2005, Inf. Vis..

[156]  Eamonn J. Keogh,et al.  Time series shapelets: a new primitive for data mining , 2009, KDD.

[157]  Chotirat Ratanamahatana,et al.  Efficient Proper Length Time Series Motif Discovery , 2013, 2013 IEEE 13th International Conference on Data Mining.

[158]  Dit-Yan Yeung,et al.  Time series clustering with ARMA mixtures , 2004, Pattern Recognit..

[159]  Anthony J. T. Lee,et al.  Mining closed patterns in multi-sequence time-series databases , 2009, Data Knowl. Eng..

[160]  Giancarlo Valente,et al.  Multivariate analysis of fMRI time series: classification and regression of brain responses using machine learning. , 2008, Magnetic resonance imaging.

[161]  Zbigniew R. Struzik,et al.  The Haar Wavelet Transform in the Time Series Similarity Paradigm , 1999, PKDD.

[162]  Eamonn J. Keogh,et al.  An Enhanced Representation of Time Series Which Allows Fast and Accurate Classification, Clustering and Relevance Feedback , 1998, KDD.

[163]  Fabian Mörchen,et al.  Efficient mining of understandable patterns from multivariate interval time series , 2007, Data Mining and Knowledge Discovery.

[164]  Eamonn J. Keogh,et al.  Probabilistic discovery of time series motifs , 2003, KDD '03.

[165]  Lan Zhang,et al.  The Econometrics of High Frequency Data , 2004 .

[166]  Yasuo Kuniyoshi,et al.  Causality quantification and its applications: structuring and modeling of multivariate time series , 2009, KDD.

[167]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[168]  M Congedo,et al.  A review of classification algorithms for EEG-based brain–computer interfaces , 2007, Journal of neural engineering.

[169]  Jarke J. van Wijk,et al.  Cluster and Calendar Based Visualization of Time Series Data , 1999, INFOVIS.

[170]  Nitin Kumar,et al.  Time-series Bitmaps: a Practical Visualization Tool for Working with Large Time Series Databases , 2005, SDM.

[171]  Qiang Wang,et al.  A multiresolution symbolic representation of time series , 2005, 21st International Conference on Data Engineering (ICDE'05).

[172]  Ben Shneiderman,et al.  An Augmented Visual Query Mechanism for Finding Patterns in Time Series Data , 2002, FQAS.

[173]  L. K. Hansen,et al.  On Clustering fMRI Time Series , 1999, NeuroImage.

[174]  José Carlos Príncipe,et al.  Competitive principal component analysis for locally stationary time series , 1998, IEEE Trans. Signal Process..

[175]  Eamonn J. Keogh,et al.  Exact Discovery of Time Series Motifs , 2009, SDM.

[176]  Amara Lynn Graps,et al.  An introduction to wavelets , 1995 .

[177]  H. B. Barlow,et al.  Unsupervised Learning , 1989, Neural Computation.

[178]  Gerhard Thonhauser,et al.  Multivariate Time Series Classification by Combining Trend-Based and Value-Based Approximations , 2012, ICCSA.

[179]  Heikki Mannila,et al.  Rule Discovery from Time Series , 1998, KDD.

[180]  Khalid Sayood,et al.  A new sequence distance measure for phylogenetic tree construction , 2003, Bioinform..

[181]  Pavel Berkhin,et al.  A Survey of Clustering Data Mining Techniques , 2006, Grouping Multidimensional Data.

[182]  Lei Chen,et al.  On The Marriage of Lp-norms and Edit Distance , 2004, VLDB.

[183]  Ambuj K. Singh,et al.  Optimizing similarity search for arbitrary length time series queries , 2004, IEEE Transactions on Knowledge and Data Engineering.

[184]  W. Chu,et al.  Fast retrieval of similar subsequences in long sequence databases , 1999, Proceedings 1999 Workshop on Knowledge and Data Engineering Exchange (KDEX'99) (Cat. No.PR00453).

[185]  Laurenz Wiskott,et al.  Predictable Feature Analysis , 2015, 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA).

[186]  Konstantinos Kalpakis,et al.  Distance measures for effective clustering of ARIMA time-series , 2001, Proceedings 2001 IEEE International Conference on Data Mining.

[187]  Li Wei,et al.  Fast time series classification using numerosity reduction , 2006, ICML.

[188]  Eamonn J. Keogh,et al.  Finding the most unusual time series subsequence: algorithms and applications , 2006, Knowledge and Information Systems.

[189]  Sylvia Kaufmann,et al.  Model-Based Clustering of Multiple Time Series , 2004 .

[190]  Eamonn J. Keogh,et al.  On the Need for Time Series Data Mining Benchmarks: A Survey and Empirical Demonstration , 2002, Data Mining and Knowledge Discovery.

[191]  James Nga-Kwok Liu,et al.  Chart Patterns Recognition and Forecast Using Wavelet and Radial Basis Function Network , 2004, KES.

[192]  Han Liu,et al.  Challenges of Big Data Analysis. , 2013, National science review.

[193]  Ian T. Nabney,et al.  Analysing time series structure with hidden Markov models , 1998, Neural Networks for Signal Processing VIII. Proceedings of the 1998 IEEE Signal Processing Society Workshop (Cat. No.98TH8378).

[194]  Junshui Ma,et al.  Online novelty detection on temporal sequences , 2003, KDD '03.

[195]  Ilaria Bartolini,et al.  WARP: accurate retrieval of shapes using phase of Fourier descriptors and time warping distance , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[196]  Cyrus Shahabi,et al.  A multilevel distance-based index structure for multivariate time series , 2005, 12th International Symposium on Temporal Representation and Reasoning (TIME'05).

[197]  Eamonn J. Keogh,et al.  Segmenting Time Series: A Survey and Novel Approach , 2002 .

[198]  Alfred Ultsch,et al.  Data Mining and Knowledge Discovery with Emergent Self-Organizing Feature Maps for Multivariate Time Series , 1999 .

[199]  Vicenç Torra,et al.  Towards the evaluation of time series protection methods , 2009, Inf. Sci..

[200]  Milos Hauskrecht,et al.  A Pattern Mining Approach for Classifying Multivariate Temporal Data , 2011, 2011 IEEE International Conference on Bioinformatics and Biomedicine.

[201]  Padhraic Smyth,et al.  Trajectory clustering with mixtures of regression models , 1999, KDD '99.

[202]  Dimitrios Gunopulos,et al.  Indexing Multidimensional Time-Series , 2004, The VLDB Journal.

[203]  Milos Hauskrecht,et al.  Mining recent temporal patterns for event detection in multivariate time series data , 2012, KDD.

[204]  G. McLachlan Discriminant Analysis and Statistical Pattern Recognition , 1992 .

[205]  Tak-Chung Fu,et al.  A review on time series data mining , 2011, Eng. Appl. Artif. Intell..

[206]  Peter N. C. Mohr,et al.  Risk Patterns and Correlated Brain Activities. Multidimensional Statistical Analysis of fMRI Data in Economic Decision Making Study , 2013, Psychometrika.

[207]  Gareth J. Janacek,et al.  A Likelihood Ratio Distance Measure for the Similarity Between the Fourier Transform of Time Series , 2005, PAKDD.

[208]  Xiaodong Liu,et al.  Dynamic programming approach for segmentation of multivariate time series , 2014, Stochastic Environmental Research and Risk Assessment.

[209]  Philip S. Yu,et al.  Optimal multi-scale patterns in time series streams , 2006, SIGMOD Conference.

[210]  Pei-Chann Chang,et al.  Evolving and clustering fuzzy decision tree for financial time series data forecasting , 2009, Expert Syst. Appl..

[211]  Huaiqing Wang,et al.  A New Segmentation Algorithm to Stock Time Series Based on PIP Approach , 2007, 2007 International Conference on Wireless Communications, Networking and Mobile Computing.

[212]  Hans-Peter Kriegel,et al.  The R*-tree: an efficient and robust access method for points and rectangles , 1990, SIGMOD '90.

[213]  Christos Faloutsos,et al.  Fast subsequence matching in time-series databases , 1994, SIGMOD '94.

[214]  Raj Bhatnagar,et al.  Discovery of Temporal Dependencies between Frequent Patterns in Multivariate Time Series , 2007, 2007 IEEE Symposium on Computational Intelligence and Data Mining.

[215]  Deok-Hwan Kim,et al.  Similarity search for multidimensional data sequences , 2000, Proceedings of 16th International Conference on Data Engineering (Cat. No.00CB37073).

[216]  Jaideep Srivastava,et al.  Event detection from time series data , 1999, KDD '99.

[217]  Gustavo Rossi,et al.  An approach to discovering temporal association rules , 2000, SAC '00.

[218]  Li Wei,et al.  SAXually Explicit Images: Finding Unusual Shapes , 2006, Sixth International Conference on Data Mining (ICDM'06).

[219]  Marc Alexa,et al.  Visualizing time-series on spirals , 2001, IEEE Symposium on Information Visualization, 2001. INFOVIS 2001..

[220]  James D. Hamilton Time Series Analysis , 1994 .

[221]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[222]  M. Szymański The Optical Gravitational Lensing Experiment. Internet Access to the OGLE Photometry Data Set: OGLE-II BVI maps and I-band data , 2005, astro-ph/0602018.

[223]  C. Burrus,et al.  Introduction to Wavelets and Wavelet Transforms: A Primer , 1997 .

[224]  Pierre Geurts,et al.  Pattern Extraction for Time Series Classification , 2001, PKDD.

[225]  Richard A. Davis,et al.  Time Series: Theory and Methods , 2013 .

[226]  Ronald Fagin,et al.  Extendible hashing—a fast access method for dynamic files , 1979, ACM Trans. Database Syst..

[227]  Anne M. Denton Kernel-density-based clustering of time series subsequences using a continuous random-walk noise model , 2005, Fifth IEEE International Conference on Data Mining (ICDM'05).

[228]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[229]  Antonin Guttman,et al.  R-trees: a dynamic index structure for spatial searching , 1984, SIGMOD '84.

[230]  Eamonn J. Keogh,et al.  Dimensionality Reduction for Fast Similarity Search in Large Time Series Databases , 2001, Knowledge and Information Systems.

[231]  Teuvo Kohonen,et al.  Self-Organizing Maps , 2010 .

[232]  Milos Hauskrecht,et al.  Multivariate Time Series Classification with Temporal Abstractions , 2009, FLAIRS.

[233]  Dina Q. Goldin,et al.  On Similarity Queries for Time-Series Data: Constraint Specification and Implementation , 1995, CP.

[234]  José Carlos Príncipe,et al.  A neighborhood map of competing one step predictors for piecewise segmentation and identification of time series , 1996, Proceedings of International Conference on Neural Networks (ICNN'96).

[235]  J. Rissanen,et al.  Modeling By Shortest Data Description* , 1978, Autom..

[236]  Yannis Theodoridis,et al.  Index-based Most Similar Trajectory Search , 2007, 2007 IEEE 23rd International Conference on Data Engineering.

[237]  Hong Hu,et al.  Anomaly Detection Algorithm Based on Pattern Density in Time Series , 2013 .

[238]  Huirong Fu,et al.  On Privacy in Time Series Data Mining , 2008, PAKDD.

[239]  Ulrich Güntzer,et al.  Algorithms for association rule mining — a general survey and comparison , 2000, SKDD.