An adaptive h-r boundary element algorithm for the laplace equation

In this paper, the combination of the h-method (mesh refinement) and the r-method (mesh redistribution) is employed to solve the Laplace equation using the boundary element procedure. The key in this approach is to derive on upper bound for the residual associated with the boundary element solution and minimize this bound with respect to an unknown grading function. The latter part is achieved by employing techniques of the calculus of variations.

[1]  H. Motz,et al.  The treatment of singularities of partial differential equations by relaxation methods , 1947 .

[2]  Graham F. Carey,et al.  GRADING FUNCTIONS AND MESH REDISTRIBUTION , 1985 .

[3]  Ernst Rank,et al.  Adaptive h-, p- and hp- versions for boundary integral element methods , 1989 .

[4]  Massimo Guiggiani,et al.  ERROR INDICATORS FOR ADAPTIVE MESH REFINEMENT IN THE BOUNDARY ELEMENT METHOD - A NEW APPROACH , 1990 .

[5]  A. Peano,et al.  Adaptive approximations in finite element structural analysis , 1979 .

[6]  D. J. Turcke,et al.  Guidelines for selecting finite element grids based on an optimization study , 1974 .

[7]  C. D. Boor,et al.  Good approximation by splines with variable knots. II , 1974 .

[8]  I. Babuska,et al.  Analysis of Optimal Finite Element Meshes in R1 , 1979 .

[9]  Marc S. Ingber,et al.  Grid optimization for the boundary element method , 1986 .

[10]  I. Babuska,et al.  Theh,p andh-p versions of the finite element method in 1 dimension , 1986 .

[11]  Ivo Babuška,et al.  The p-Version of the Finite Element Method for Parabolic Equations. Part 1 , 1981 .

[12]  Ivo Babuška,et al.  A posteriori error analysis and adaptive processes in the finite element method: Part II—adaptive mesh refinement , 1983 .

[13]  B. Szabó Some recent developments in finite element analysis , 1979 .

[14]  E. Rank A-posteriori Error Estimates and Adaptive Refinement for some Boundary Integral Element Methods , 1984 .

[15]  Wolfgang L. Wendland,et al.  Adaptive boundary element methods for strongly elliptic integral equations , 1988 .

[16]  J. Rencis,et al.  A self-adaptive h -refinement technique for the boundary element method , 1989 .

[17]  B. Szabó,et al.  p‐convergent finite element approximations in fracture mechanics , 1978 .

[18]  Ben Qi Guo Theh−p version of the finite element method for elliptic equations of order2m , 1988 .

[19]  Robert L. Mullen,et al.  Solution of elasticity problems by a self‐adaptive mesh refinement technique for boundary element computation , 1986 .

[20]  Noboru Kikuchi,et al.  A method of grid optimization for finite element methods , 1983 .

[21]  N. G. Zamani,et al.  Adaptive mesh redistribution for the boundary element in elastostatics , 1990 .

[22]  Ivo Babuška,et al.  A posteriori error analysis and adaptive processes in the finite element method: Part I—error analysis , 1983 .

[23]  E. Alarcon,et al.  p-adaptive boundary elements , 1986 .

[24]  Alberto Peano,et al.  Hierarchies of conforming finite elements for plane elasticity and plate bending , 1976 .

[25]  W. Rheinboldt,et al.  Error Estimates for Adaptive Finite Element Computations , 1978 .

[26]  E. Alarćon,et al.  Hierarchical boundary elements , 1985 .

[27]  C. Brebbia,et al.  Boundary Element Techniques , 1984 .

[28]  Graham F. Carey,et al.  Adaptive mesh redistribution for a boundary element (panel) method , 1987 .