Approaching fundamental energy consumption limits in optical communications

We study the fundamental energy consumption of fiber-optic communications links. We show that the quantum limit for the energy efficiency of a multi-span system deploying generalized on-off keying with photon-counting inline regeneration exceeds by orders of magnitude that of state-of-the-art systems employing inline optical amplification.

[1]  P. Winzer,et al.  Quantum Limits on the Energy Consumption of Optical Transmission Systems , 2014, Journal of Lightwave Technology.

[2]  Alexander S. Holevo,et al.  The Capacity of the Quantum Channel with General Signal States , 1996, IEEE Trans. Inf. Theory.

[4]  Don M. Boroson A survey of technology-driven capacity limits for free-space laser communications , 2007, SPIE Optical Engineering + Applications.

[5]  Robert W. Tkach,et al.  Scaling optical communications for the next decade and beyond , 2010, Bell Labs Technical Journal.

[6]  C. Caves Quantum limits on noise in linear amplifiers , 1982 .

[7]  P. Winzer,et al.  Capacity Limits of Optical Fiber Networks , 2010, Journal of Lightwave Technology.

[8]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[9]  P. Winzer Energy-Efficient Optical Transport Capacity Scaling Through Spatial Multiplexing , 2011, IEEE Photonics Technology Letters.

[10]  Axthonv G. Oettinger,et al.  IEEE Transactions on Information Theory , 1998 .

[11]  H. Haus,et al.  Preparation, measurement and information capacity of optical quantum states , 1986 .

[12]  R S Tucker,et al.  Green Optical Communications—Part I: Energy Limitations in Transport , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[13]  P. J. Winzer,et al.  High-Spectral-Efficiency Optical Modulation Formats , 2012, Journal of Lightwave Technology.

[14]  J. Gordon,et al.  Quantum Effects in Communications Systems , 1962, Proceedings of the IRE.

[15]  Peter J. Winzer,et al.  Beyond 100G Ethernet , 2010, IEEE Communications Magazine.

[16]  E. Lutz,et al.  Experimental verification of Landauer’s principle linking information and thermodynamics , 2012, Nature.

[17]  Charles H. Bennett,et al.  Notes on Landauer's Principle, Reversible Computation, and Maxwell's Demon , 2002, physics/0210005.

[18]  Seth Lloyd,et al.  Achieving the Holevo bound via sequential measurements , 2010, 1012.0386.

[19]  H. Haus,et al.  QUANTUM NOISE IN LINEAR AMPLIFIERS , 1962 .