The metallicity distribution of bulge clump giants in Baade’s window

Aims. We seek to constrain the formation of the Galactic bulge by analysing the detailed chemical composition of a large sample of red clump stars in Baade’s window. These stars were selected to minimise the contamination by other Galactic components, so they are good tracers of the bulge metallicity distribution in Baade’s window, at least for stars more metal-rich than ∼−1.5. Methods. We used an automatic procedure to measure [Fe/H] differentially with respect to the metal-rich star μLeo in a sample of 219 bulge red clump stars from R = 20 000 resolution spectra obtained with FLAMES/GIRAFFE at the VLT. For a subsample of 162 stars, we also derived [Mg/H] from spectral synthesis around the Mg i triplet at λ 6319 A. Results. The Fe and Mg metallicity distributions are both asymmetric with median values of +0.16 and +0.21, respectively. They show only a small proportion of stars at low metallicities, extending down to [Fe/H] = −1. 1o r [Mg/H] = −0.7. The iron distribution is clearly bimodal, as revealed both by a deconvolution (from observational errors) and a Gaussian decomposition. The decomposition of the observed Fe and Mg metallicity distributions into Gaussian components yields two populations of equal sizes (50% each): a metal-poor component centred on [Fe/H] = −0.30 and [Mg/H] = −0.06 with a large dispersion and a narrow metal-rich component centred on [Fe/H] =+ 0.32 and [Mg/H] =+ 0.35. The metal-poor component shows high [Mg/Fe] ratios (around 0.3), while stars in the metal-rich component are found to have nearly solar ratios. Kinematical differences between the two components have also been found: the metal-poor component shows kinematics compatible with an old spheroid, while the metal-rich component is consistent with a population supporting a bar. In view of their chemical and kinematical properties, we suggest different formation scenarii for the two populations: a rapid formation time scale as an old spheroid for the metal-poor component (old bulge) and for the metal-rich component, a formation on a longer time scale driven by the evolution of the bar (pseudo-bulge). The observations are described well by a simple model consisting of two components: a simple closed box model to predict the metal-poor population contribution and a local thin disc metallicity distribution, shifted in metallicity, to represent the metal-rich population. The pseudo-bulge is compatible with its being formed from the inner thin disc, assuming high (but plausible) values of the gradients in the early Galactic disc.

[1]  S. Ortolani,et al.  Alpha element abundances and gradients in the Milky Way bulge from FLAMES-GIRAFFE spectra of 650 K giants , 2011, 1103.6104.

[2]  C. Babusiaux,et al.  Insights on the Milky Way bulge formation from the correlations between kinematics and metallicity , 2010, 1005.3919.

[3]  Astrophysics,et al.  The first chemical abundance analysis of K giants in the inner Galactic disc , 2010, 1004.2833.

[4]  M. Asplund,et al.  Chemical similarities between Galactic bulge and local thick disk red giants: O, Na, Mg, Al, Si, Ca, and Ti , 2010, 1001.2521.

[5]  Jennifer A. Johnson,et al.  CHEMICAL COMPOSITION OF FAINT (I ∼ 21 mag) MICROLENSED BULGE DWARF OGLE-2007-BLG-514S , 2009, 0910.1358.

[6]  Andreas Koch,et al.  KINEMATICS AT THE EDGE OF THE GALACTIC BULGE: EVIDENCE FOR CYLINDRICAL ROTATION , 2009, 0908.1109.

[7]  D. Physics,et al.  OGLE-2009-BLG-076S: THE MOST METAL-POOR DWARF STAR IN THE GALACTIC BULGE , 2009, 0906.2235.

[8]  Judith G. Cohen,et al.  CLUES TO THE METALLICITY DISTRIBUTION IN THE GALACTIC BULGE: ABUNDANCES IN MOA–2008–BLG–310S AND MOA–2008–BLG–311S , 2009, 0904.2020.

[9]  P. Stetson,et al.  DAOSPEC: An Automatic Code for Measuring Equivalent Widths in High-Resolution Stellar Spectra , 2008, 0811.2932.

[10]  M. Livio,et al.  Stellar Proper Motions in the Galactic Bulge from Deep Hubble Space Telescope ACS WFC Photometry , 2008, 0809.1682.

[11]  Andreas Koch,et al.  The Bulge Radial Velocity Assay (BRAVA):I. Sample selection and a rotation curve , 2008, 0807.3967.

[12]  S. Ortolani,et al.  The metal content of bulge field stars from FLAMES-GIRAFFE spectra - I. Stellar parameters and iron abundances , 2008, 0805.1218.

[13]  Kjell Eriksson,et al.  A grid of MARCS model atmospheres for late-type stars. I. Methods and general properties , 2008, 0805.0554.

[14]  C. Chiappini,et al.  Chemical Similarities Between Galactic Bulge And Local Thick Disk Red Giant Stars , 2008, 0804.4124.

[15]  K. Fuhrmann Nearby stars of the Galactic disc and halo – IV , 2008 .

[16]  Judith G. Cohen,et al.  Clues to the Metallicity Distribution in the Galactic Bulge: Abundances in OGLE-2007-BLG-349S , 2008, 0801.3264.

[17]  Jennifer A. Johnson,et al.  A High-Resolution Spectrum of the Highly Magnified Bulge G Dwarf MOA-2006-BLG-099S , 2008, 0801.2159.

[18]  R. Rich,et al.  The First Detailed Abundances for M Giants in the Inner Bulge from Infrared Spectroscopy , 2007, 0707.1855.

[19]  University of Michigan,et al.  Accepted for publication in ApJ Letters Preprint typeset using L ATEX style emulateapj v. 03/07/07 TRACING THE GALACTIC THICK DISK TO SOLAR METALLICITIES 1 , 2022 .

[20]  S. Mao,et al.  Erratum: Modelling the Galactic bar using OGLE-II red clump giant stars , 2007, 0704.1614.

[21]  P. Kroupa,et al.  Testing the universal stellar IMF on the metallicity distribution in the bulges of the Milky Way and M 31 , 2007, astro-ph/0702047.

[22]  F. Matteucci,et al.  The Metal-Rich Universe: Formation and evolution of the Galactic bulge: constraints from stellar abundances , 2006, astro-ph/0702137.

[23]  I. Paris,et al.  Rotational velocities of A-type stars. III. Velocity distributions , 2006, astro-ph/0610785.

[24]  S. Ortolani,et al.  Oxygen, Sodium, Magnesium and Aluminium as tracers of the Galactic Bulge Formation , 2006, astro-ph/0610346.

[25]  P. François,et al.  Abundance gradients in the Milky Way for α elements, iron peak elements, barium, lanthanum, and europium , 2006, astro-ph/0609813.

[26]  R. Michael Rich,et al.  Abundances of Baade’s Window Giants from Keck HIRES Spectra. II. The Alpha and Light Odd Elements , 2006, astro-ph/0609087.

[27]  Jennifer A. Johnson,et al.  A High-Resolution Spectrum of the Extremely Metal-rich Bulge G Dwarf OGLE-2006-BLG-265 , 2006, astro-ph/0608680.

[28]  R. Rich,et al.  Evidence of a Metal-rich Galactic Bar from the Vertex Deviation of the Velocity Ellipsoid , 2006, astro-ph/0611433.

[29]  S. Ortolani,et al.  Abundances in the Galactic Bulge: evidence for fast chemical enrichment , 2006, Proceedings of the International Astronomical Union.

[30]  M. Tamura,et al.  The Distance to the Galactic Center Derived from Infrared Photometry of Bulge Red Clump Stars , 2006, astro-ph/0607408.

[31]  O. Bienaym'e,et al.  Elemental abundances in the atmosphere of clump giants , 2006, astro-ph/0605615.

[32]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[33]  Bangalore,et al.  Elemental abundance survey of the Galactic thick disc , 2005, astro-ph/0512505.

[34]  R. Rich,et al.  Abundances of Baade’s Window Giants from Keck HIRES Spectra. I. Stellar Parameters and [Fe/H] Values , 2005, astro-ph/0510408.

[35]  R. Rich,et al.  The First Detailed Abundances for M Giants in Baade’s Window from Infrared Spectroscopy , 2005, astro-ph/0506051.

[36]  J. Meléndez,et al.  The Effective Temperature Scale of FGK Stars. II. Teff:Color:[Fe/H] Calibrations , 2005, astro-ph/0503110.

[37]  P. Kroupa,et al.  The Variation of Integrated Star Initial Mass Functions among Galaxies , 2005, astro-ph/0502525.

[38]  G. Gilmore,et al.  The structure of the Galactic bar , 2005, astro-ph/0501383.

[39]  Potsdam,et al.  alpha-, r-, and s-process element trends in the Galactic thin and thick disks , 2004, astro-ph/0412132.

[40]  K. Cunha,et al.  Galactic Metallicity Gradients Derived from a Sample of OB Stars , 2004, astro-ph/0409084.

[41]  S. Picaud,et al.  3D outer bulge structure from near infrared star counts , 2004, astro-ph/0407361.

[42]  J. Kormendy,et al.  Secular Evolution and the Formation of Pseudobulges in Disk Galaxies , 2004, astro-ph/0407343.

[43]  R. Rich,et al.  The metal content of the bulge globular cluster NGC 6528 , 2004, astro-ph/0405475.

[44]  S. Feltzing,et al.  Oxygen trends in the Galactic thin and thick disks , 2003, astro-ph/0310741.

[45]  R. Janeiro,et al.  Gas physics, disk fragmentation, and bulge formation in young galaxies , 2003, astro-ph/0312139.

[46]  A. Robin,et al.  A synthetic view on structure and evolution of the Milky Way , 2003, astro-ph/0401052.

[47]  K. Nomoto,et al.  Three-dimensional Simulations of the Chemical and Dynamical Evolution of the Galactic Bulge , 2003, astro-ph/0301404.

[48]  R. Rich,et al.  Age and Metallicity Distribution of the Galactic Bulge from Extensive Optical and Near-IR Stellar Photometry , 2002, astro-ph/0210660.

[49]  P. Tissera,et al.  The effects of mergers on the formation of disc-bulge systems in hierarchical clustering scenarios , 2002, astro-ph/0208538.

[50]  C. Chiappini,et al.  Abundance Gradients and the Formation of the Milky Way , 2001, astro-ph/0102134.

[51]  J. Aguerri,et al.  Growth of galactic bulges by mergers - I. Dense satellites , 2000, astro-ph/0012156.

[52]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[53]  A. Moorwood,et al.  Optical and IR Telescope Instrumentation and Detectors , 2000 .

[54]  L. Girardi,et al.  Evolutionary tracks and isochrones for low- and intermediate-mass stars: From 0.15 to 7 , and from to 0.03 , 1999, astro-ph/9910164.

[55]  Santiago Arribas,et al.  The effective temperature scale of giant stars (F0–K5) - II. Empirical calibration of versus colours and [Fe/H] , 1999 .

[56]  A. Bowman,et al.  Applied smoothing techniques for data analysis : the kernel approach with S-plus illustrations , 1999 .

[57]  Ian S. Glass,et al.  Handbook of Infrared Astronomy: Photometry , 1999 .

[58]  H. C. Stempels,et al.  VALD{2: Progress of the Vienna Atomic Line Data Base ? , 1999 .

[59]  M. Noguchi Early Evolution of Disk Galaxies: Formation of Bulges in Clumpy Young Galactic Disks , 1998, astro-ph/9806355.

[60]  Richard D. Deveaux,et al.  Applied Smoothing Techniques for Data Analysis , 1999, Technometrics.

[61]  A. Gould,et al.  The Proper Motion of NGC 6522 in Baade's Window , 1997, astro-ph/9710354.

[62]  Andrew Collier Cameron,et al.  Spectropolarimetric observations of active stars , 1997 .

[63]  N. Epchtein,et al.  The Deep Near Infrared Southern Sky Survey (denis): Progress Status and Scientific Achievements , 1997 .

[64]  R. M. Rich,et al.  K Giants in Baade's Window. II. The Abundance Distribution , 1996, astro-ph/9604045.

[65]  D. Minniti Field stars and clusters of the Galactic bulge: Implications for galaxy formation , 1995, astro-ph/9509109.

[66]  R. Rich,et al.  Near-coeval formation of the Galactic bulge and halo inferred from globular cluster ages , 1995, Nature.

[67]  Samuel Harvey Moseley,et al.  Morphology, near infrared luminosity, and mass of the galactic bulge from Cobe dirbe observations , 1995 .

[68]  R. Ibata,et al.  The outer regions of the Galactic bulge – II. Analysis , 1995, astro-ph/9502037.

[69]  D.N.Spergel,et al.  Signatures of bulge triaxiality from kinematics in Baade's window , 1994, astro-ph/9409024.

[70]  R. Rich,et al.  The First Detailed Abundance Analysis of Galactic Bulge K Giants in Baade's Window , 1994 .

[71]  R. A. James,et al.  A dynamical instability of bars in disk galaxies , 1991, Nature.

[72]  C. Norman,et al.  Dissipation in barred galaxies: the growth of bulges and central mass concentrations , 1990 .

[73]  R. M. Rich,et al.  Spectroscopy and abundances of 88 K giants in Baade's Window , 1988 .

[74]  M. Reid,et al.  The distance to the center of the Galaxy , 1987 .

[75]  M. Calvin Chemical evolution. , 1975, American scientist.

[76]  L. Lucy An iterative technique for the rectification of observed distributions , 1974 .

[77]  William H. Richardson,et al.  Bayesian-Based Iterative Method of Image Restoration , 1972 .

[78]  G. Vaucouleurs Interpretation of velocity distribution of the inner regions of the Galaxy , 1964 .

[79]  A. Sandage,et al.  Evidence from the motions of old stars that the Galaxy collapsed. , 1962 .

[80]  Annales d'Astrophysique , 1946, Nature.