Stereospecific interactions of proline residues in protein structures and complexes.

[1]  U. Samanta,et al.  Geometry of interaction of the histidine ring with other planar and basic residues. , 2003, Journal of proteome research.

[2]  P. Chakrabarti,et al.  Sequence and structure patterns in proteins from an analysis of the shortest helices: implications for helix nucleation. , 2003, Journal of molecular biology.

[3]  Pinak Chakrabarti,et al.  Quantifying the accessible surface area of protein residues in their local environment. , 2002, Protein engineering.

[4]  J. Janin,et al.  Dissecting protein–protein recognition sites , 2002, Proteins.

[5]  Paul M. G. Curmi,et al.  Twist and shear in β-sheets and β-ribbons , 2002 .

[6]  R. Huber,et al.  The methyl group of N(alpha)(Me)Arg-containing peptides disturbs the active-site geometry of thrombin, impairing efficient cleavage. , 2002, Journal of molecular biology.

[7]  Pinak Chakrabarti,et al.  Aromatic-aromatic interactions in and around α-helices , 2002 .

[8]  G. Tóth,et al.  Stabilization of local structures by pi-CH and aromatic-backbone amide interactions involving prolyl and aromatic residues. , 2001, Protein engineering.

[9]  Steve Scheiner,et al.  Strength of the CαH··O Hydrogen Bond of Amino Acid Residues* , 2001, The Journal of Biological Chemistry.

[10]  J. Sühnel,et al.  C-h⋯π-interactions in proteins , 2001 .

[11]  N. Ben-Tal,et al.  ConSurf: an algorithmic tool for the identification of functional regions in proteins by surface mapping of phylogenetic information. , 2001, Journal of molecular biology.

[12]  S. Lovas,et al.  The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperone-assisted protein folding. , 2001, Biochemistry.

[13]  T. Steiner,et al.  Hydrogen bonds with pi-acceptors in proteins: frequencies and role in stabilizing local 3D structures. , 2001, Journal of molecular biology.

[14]  V. Fülöp,et al.  Structures of Prolyl Oligopeptidase Substrate/Inhibitor Complexes , 2001, The Journal of Biological Chemistry.

[15]  U. Samanta,et al.  Assessing the role of tryptophan residues in the binding site. , 2001, Protein engineering.

[16]  D. Pal,et al.  The interrelationships of side-chain and main-chain conformations in proteins. , 2001, Progress in biophysics and molecular biology.

[17]  C. Sadasivan,et al.  Interaction of the factor XIII activation peptide with alpha -thrombin. Crystal structure of its enzyme-substrate analog complex. , 2000, The Journal of biological chemistry.

[18]  A. Thomas,et al.  A fast method to predict protein interaction sites from sequences. , 2000, Journal of molecular biology.

[19]  B. Müller-Hill,et al.  On the conservation of protein sequences in evolution. , 2000, Trends in biochemical sciences.

[20]  L. Castagnoli,et al.  Domain repertoires as a tool to derive protein recognition rules , 2000, FEBS letters.

[21]  Xin Huang,et al.  Structure of a WW domain containing fragment of dystrophin in complex with β-dystroglycan , 2000, Nature Structural Biology.

[22]  P. Worley,et al.  Structure of the Homer EVH1 Domain-Peptide Complex Reveals a New Twist in Polyproline Recognition , 2000, Neuron.

[23]  U. Samanta,et al.  Environment of tryptophan side chains in proteins , 2000, Proteins.

[24]  L. Serrano The relationship between sequence and structure in elementary folding units. , 2000, Advances in protein chemistry.

[25]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[26]  D. Pal,et al.  Cis peptide bonds in proteins: residues involved, their conformations, interactions and locations. , 1999, Journal of molecular biology.

[27]  Gautam R. Desiraju,et al.  The Weak Hydrogen Bond: In Structural Chemistry and Biology , 1999 .

[28]  R. Ranganathan,et al.  Evolutionarily conserved pathways of energetic connectivity in protein families. , 1999, Science.

[29]  U. Samanta,et al.  Packing of aromatic rings against tryptophan residues in proteins. , 1999, Acta crystallographica. Section D, Biological crystallography.

[30]  Steven C. Almo,et al.  Profilin binds proline-rich ligands in two distinct amide backbone orientations , 1999, Nature Structural Biology.

[31]  A. Fedorov,et al.  Structure of EVH1, a novel proline-rich ligand-binding module involved in cytoskeletal dynamics and neural function , 1999, Nature Structural Biology.

[32]  A. Doig,et al.  Side-chain structures in the first turn of the alpha-helix. , 1999, Journal of molecular biology.

[33]  J. Richardson,et al.  Asparagine and glutamine: using hydrogen atom contacts in the choice of side-chain amide orientation. , 1999, Journal of molecular biology.

[34]  Pinak Chakrabarti,et al.  C—H⋯O hydrogen bond involving proline residues in α-helices , 1998 .

[35]  M. Nishio,et al.  CH/pi interactions in the crystal structure of class I MHC antigens and their complexes with peptides. , 1998, Bioorganic & medicinal chemistry.

[36]  J. Thornton,et al.  Determinants of strand register in antiparallel β‐sheets of proteins , 1998, Protein science : a publication of the Protein Society.

[37]  John P. Overington,et al.  HOMSTRAD: A database of protein structure alignments for homologous families , 1998, Protein science : a publication of the Protein Society.

[38]  L. Serrano,et al.  Crystal structure of the abl-SH3 domain complexed with a designed high-affinity peptide ligand: implications for SH3-ligand interactions. , 1998, Journal of molecular biology.

[39]  B. Kay,et al.  From peptides to drugs via phage display , 1998 .

[40]  A. Bogan,et al.  Anatomy of hot spots in protein interfaces. , 1998, Journal of molecular biology.

[41]  G Fischer,et al.  Side-chain effects on peptidyl-prolyl cis/trans isomerisation. , 1998, Journal of molecular biology.

[42]  Sandeep Kumar,et al.  Dissecting α‐helices: Position‐specific analysis of α‐helices in globular proteins , 1998, Proteins.

[43]  Y. Umezawa,et al.  The CH/π interaction : evidence, nature, and consequences , 1998 .

[44]  Steven C. Almo,et al.  Structure of the profilin-poly-L-proline complex involved in morphogenesis and cytoskeletal regulation , 1997, Nature Structural Biology.

[45]  A. Valencia,et al.  Correlated mutations contain information about protein-protein interaction. , 1997, Journal of molecular biology.

[46]  S F Howard,et al.  Molecular characterization of the hdm2-p53 interaction. , 1997, Journal of molecular biology.

[47]  Vasantha Pattabhi,et al.  CH...O Hydrogen Bonds in -sheets , 1997 .

[48]  A. Levine p53, the Cellular Gatekeeper for Growth and Division , 1997, Cell.

[49]  Y. Zhao,et al.  Cyclophilin A complexed with a fragment of HIV-1 gag protein: insights into HIV-1 infectious activity. , 1997, Structure.

[50]  H. Husi,et al.  Structures of cyclophilin-ligand complexes. , 1997, Progress in biophysics and molecular biology.

[51]  W. Sundquist,et al.  Crystal Structure of Human Cyclophilin A Bound to the Amino-Terminal Domain of HIV-1 Capsid , 1996, Cell.

[52]  Helen M. Berman,et al.  Crystallographic Evidence for Cα–H···O=C Hydrogen Bonds in a Collagen Triple Helix , 1996 .

[53]  A. Levine,et al.  Structure of the MDM2 Oncoprotein Bound to the p53 Tumor Suppressor Transactivation Domain , 1996, Science.

[54]  Y. Zhao,et al.  Crystal structure implies that cyclophilin predominantly catalyzes the trans to cis isomerization. , 1996, Biochemistry.

[55]  Y. Zhao,et al.  Mechanistic implication of crystal structures of the cyclophilin-dipeptide complexes. , 1996, Biochemistry.

[56]  F. Cohen,et al.  An evolutionary trace method defines binding surfaces common to protein families. , 1996, Journal of molecular biology.

[57]  R. Frank,et al.  Molecular interaction between the Strep-tag affinity peptide and its cognate target, streptavidin. , 1996, Journal of molecular biology.

[58]  Z. Derewenda,et al.  The occurrence of C-H...O hydrogen bonds in proteins. , 1995, Journal of molecular biology.

[59]  U. Samanta,et al.  CH/pi interaction in the packing of the adenine ring in protein structures. , 1995, Journal of molecular biology.

[60]  R. Kini,et al.  A hypothetical structural role for proline residues in the flanking segments of protein-protein interaction sites. , 1995, Biochemical and biophysical research communications.

[61]  Greet Vanhoof,et al.  Proline motifs in peptides and their biological processing , 1995, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[62]  M. A. Wouters,et al.  An analysis of side chain interactions and pair correlations within antiparallel β‐sheets: The differences between backbone hydrogen‐bonded and non‐hydrogen‐bonded residue pairs , 1995, Proteins.

[63]  R. L. Baldwin,et al.  Stability of alpha-helices. , 1995, Advances in protein chemistry.

[64]  J. Thornton,et al.  A revised set of potentials for β‐turn formation in proteins , 1994 .

[65]  Edward J. Collins,et al.  Three-dimensional structure of a peptide extending from one end of a class I MHC binding site , 1994, Nature.

[66]  Don C. Wiley,et al.  Three-dimensional structure of a human class II histocompatibility molecule complexed with superantigen , 1994, Nature.

[67]  U. Hobohm,et al.  Enlarged representative set of protein structures , 1994, Protein science : a publication of the Protein Society.

[68]  M. Williamson,et al.  The structure and function of proline-rich regions in proteins. , 1994, The Biochemical journal.

[69]  T. Pawson,et al.  SH2 and SH3 domains in signal transduction. , 1994, Advances in cancer research.

[70]  G. Tollin,et al.  Protein interaction sites obtained via sequence homology. The site of complexation of electron transfer partners of cytochrome c revealed by mapping amino acid substitutions onto three-dimensional protein surfaces. , 1994, Biochimie.

[71]  Jeremy Luban,et al.  Human immunodeficiency virus type 1 Gag protein binds to cyclophilins A and B , 1993, Cell.

[72]  P. A. Peterson,et al.  Crystal structures of two viral peptides in complex with murine MHC class I H-2Kb. , 1994, Science.

[73]  S. Schreiber,et al.  Solution structure of the SH3 domain of Src and identification of its ligand-binding site. , 1992, Science.

[74]  K. Sharp,et al.  Protein folding and association: Insights from the interfacial and thermodynamic properties of hydrocarbons , 1991, Proteins.

[75]  P. Kraulis A program to produce both detailed and schematic plots of protein structures , 1991 .

[76]  Professor Dr. George A. Jeffrey,et al.  Hydrogen Bonding in Biological Structures , 1991, Springer Berlin Heidelberg.

[77]  J. Thornton,et al.  Influence of proline residues on protein conformation. , 1991, Journal of molecular biology.

[78]  J. Devlin,et al.  Random peptide libraries: a source of specific protein binding molecules. , 1990, Science.

[79]  J E Wampler,et al.  Occurrence and role of cis peptide bonds in protein structures. , 1990, Journal of molecular biology.

[80]  J. Wendoloski,et al.  Structural origins of high-affinity biotin binding to streptavidin. , 1989, Science.

[81]  J. Thornton,et al.  Analysis and prediction of the different types of β-turn in proteins , 1988 .

[82]  G. Rose,et al.  Helix signals in proteins. , 1988, Science.

[83]  J. Richardson,et al.  Amino acid preferences for specific locations at the ends of alpha helices. , 1988, Science.

[84]  F. Schmid,et al.  Catalysis of protein folding by prolyl isomerase , 1987, Nature.

[85]  D. Speicher,et al.  Cyclophilin: a specific cytosolic binding protein for cyclosporin A. , 1984, Science.

[86]  E. Baker,et al.  Hydrogen bonding in globular proteins. , 1984, Progress in biophysics and molecular biology.

[87]  W. Kabsch,et al.  Dictionary of protein secondary structure: Pattern recognition of hydrogen‐bonded and geometrical features , 1983, Biopolymers.

[88]  P. Y. Chou,et al.  Prediction of protein conformation. , 1974, Biochemistry.

[89]  B. Lee,et al.  The interpretation of protein structures: estimation of static accessibility. , 1971, Journal of molecular biology.