Cortical excitability controls the strength of mental imagery

Mental imagery provides an essential simulation tool for remembering the past and planning the future, with its strength affecting both cognition and mental health. Research suggests that neural activity spanning prefrontal, parietal, temporal, and visual areas supports the generation of mental images. Exactly how this network controls the strength of visual imagery remains unknown. Here, brain imaging and transcranial magnetic phosphene data show that lower resting activity and excitability levels in early visual cortex (V1-V3) predict stronger sensory imagery. Further, electrically decreasing visual cortex excitability using tDCS increases imagery strength, demonstrating a causative role of visual cortex excitability in controlling visual imagery. Together, these data suggest a neurophysiological mechanism of cortical excitability involved in controlling the strength of mental images.

[1]  Peter G. Morris,et al.  tDCS-induced alterations in GABA concentration within primary motor cortex predict motor learning and motor memory: A 7 T magnetic resonance spectroscopy study , 2014, NeuroImage.

[2]  J. Mattingley,et al.  Applications of transcranial direct current stimulation for understanding brain function , 2014, Trends in Neurosciences.

[3]  B. Cheeran,et al.  Inter-individual Variability in Response to Non-invasive Brain Stimulation Paradigms , 2014, Brain Stimulation.

[4]  Denis G. Pelli,et al.  ECVP '07 Abstracts , 2007, Perception.

[5]  A. Antal,et al.  Electrode-distance dependent after-effects of transcranial direct and random noise stimulation with extracephalic reference electrodes , 2010, Clinical Neurophysiology.

[6]  J. Shine,et al.  Imagine that: elevated sensory strength of mental imagery in individuals with Parkinson's disease and visual hallucinations , 2015, Proceedings of the Royal Society B: Biological Sciences.

[7]  M. Nitsche,et al.  Excitability changes induced in the human primary visual cortex by transcranial direct current stimulation: direct electrophysiological evidence. , 2004, Investigative ophthalmology & visual science.

[8]  Lars Muckli,et al.  Primary Visual Cortex Activity along the Apparent-Motion Trace Reflects Illusory Perception , 2005, PLoS biology.

[9]  Chris I. Baker,et al.  Disentangling visual imagery and perception of real-world objects , 2012, NeuroImage.

[10]  M. Nitsche,et al.  Physiological Basis of Transcranial Direct Current Stimulation , 2011, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[11]  Justin A. Harris,et al.  Neuroscience and Biobehavioral Reviews Modelling Non-invasive Brain Stimulation in Cognitive Neuroscience , 2022 .

[12]  A. Javadi,et al.  Transcranial Direct Current Stimulation (tDCS) Enhances Reconsolidation of Long-Term Memory , 2013, Brain Stimulation.

[13]  Joel Pearson,et al.  The human imagination: the cognitive neuroscience of visual mental imagery , 2019, Nature Reviews Neuroscience.

[14]  F. D. de Lange,et al.  Prior Expectations Bias Sensory Representations in Visual Cortex , 2013, The Journal of Neuroscience.

[15]  K. Hoffmann,et al.  Direct Current Stimulation over V5 Enhances Visuomotor Coordination by Improving Motion Perception in Humans , 2004, Journal of Cognitive Neuroscience.

[16]  A. Cowey,et al.  Magnetically induced phosphenes in sighted, blind and blindsighted observers , 2000, Neuroreport.

[17]  Anders M. Dale,et al.  Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction , 1999, NeuroImage.

[18]  J. Pearson,et al.  The blind mind: No sensory visual imagery in aphantasia , 2017, Cortex.

[19]  M. Schölvinck,et al.  Neural basis of global resting-state fMRI activity , 2010, Proceedings of the National Academy of Sciences.

[20]  S. Kosslyn,et al.  The role of area 17 in visual imagery: convergent evidence from PET and rTMS. , 1999, Science.

[21]  W. Bradley,et al.  MRI: The Basics , 1997 .

[22]  T. Atay,et al.  Motor and Occipital Cortex Excitability in Migraine Patients , 2006, Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques.

[23]  D. Bates,et al.  Fitting Linear Mixed-Effects Models Using lme4 , 2014, 1406.5823.

[24]  H. Komatsu,et al.  Neural representation of the luminance and brightness of a uniform surface in the macaque primary visual cortex. , 2001, Journal of neurophysiology.

[25]  G. Rees,et al.  The structural basis of inter-individual differences in human behaviour and cognition , 2011, Nature Reviews Neuroscience.

[26]  Sergio Della Sala,et al.  Lives without imagery – Congenital aphantasia , 2015, Cortex.

[27]  Jason B. Mattingley,et al.  The efficacy of transcranial direct current stimulation to prefrontal areas is related to underlying cortical morphology , 2019, NeuroImage.

[28]  Christopher C. Pack,et al.  Improved Discrimination of Visual Stimuli Following Repetitive Transcranial Magnetic Stimulation , 2010, PloS one.

[29]  Walter Paulus,et al.  Manipulation of phosphene thresholds by transcranial direct current stimulation in man , 2003, Experimental Brain Research.

[30]  L. Cohen,et al.  Transcranial direct current stimulation: State of the art 2008 , 2008, Brain Stimulation.

[31]  S. Brandt,et al.  Transcranial direct current stimulation affects visual perception measured by threshold perimetry , 2010, Experimental Brain Research.

[32]  Daniel P. Spiegel,et al.  The effect of transcranial direct current stimulation on contrast sensitivity and visual evoked potential amplitude in adults with amblyopia , 2016, Scientific Reports.

[33]  M. Nitsche,et al.  Partially non‐linear stimulation intensity‐dependent effects of direct current stimulation on motor cortex excitability in humans , 2013, The Journal of physiology.

[34]  M. Nitsche,et al.  External modulation of visual perception in humans , 2001, Neuroreport.

[35]  M. Fox,et al.  Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging , 2007, Nature Reviews Neuroscience.

[36]  Y. Benjamini,et al.  Resampling-based false discovery rate controlling multiple test procedures for correlated test statistics , 1999 .

[37]  Jeff H. Duyn,et al.  Modulation of spontaneous fMRI activity in human visual cortex by behavioral state , 2009, NeuroImage.

[38]  Alan Cowey,et al.  Enhanced Cortical Excitability in Grapheme-Color Synesthesia and Its Modulation , 2011, Current Biology.

[39]  P. Montague,et al.  Vividness of mental imagery: Individual variability can be measured objectively , 2007, Vision Research.

[40]  Joel Pearson,et al.  Sensory memory for ambiguous vision , 2008, Trends in Cognitive Sciences.

[41]  V. Walsh,et al.  Short duration transcranial direct current stimulation (tDCS) modulates verbal memory , 2012, Brain Stimulation.

[42]  Lars Muckli,et al.  Two distinct feedback codes in V1 for ‘real’ and ‘imaginary’ internal experiences , 2019, bioRxiv.

[43]  S. Kosslyn,et al.  Mental Imagery: Functional Mechanisms and Clinical Applications , 2015, Trends in Cognitive Sciences.

[44]  Joel Pearson,et al.  The functional effects of color perception and color imagery. , 2013, Journal of vision.

[45]  Satoshi Tanaka,et al.  Inter-subject Variability in Electric Fields of Motor Cortical tDCS , 2015, Brain Stimulation.

[46]  K. Welch,et al.  Brain excitability in migraine: evidence from transcranial magnetic stimulation studies. , 1998, Current opinion in neurology.

[47]  Frank Tong,et al.  Evaluating the Mind's Eye: the Metacognition of Visual Imagery , 2022 .

[48]  B. Wandell,et al.  Visual Field Maps in Human Cortex , 2007, Neuron.

[49]  Roi Cohen Kadosh,et al.  Transcranial alternating current stimulation reveals atypical 40 Hz phosphene thresholds in synaesthesia , 2015, Cortex.

[50]  P. Manganotti,et al.  Visual cortex hyperexcitability in idiopathic generalized epilepsies with photosensitivity: A TMS pilot study , 2013, Epilepsy & Behavior.

[51]  Joel Pearson,et al.  Mental Imagery and Visual Working Memory , 2011, PloS one.

[52]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.

[53]  Marcel A J van Gerven,et al.  Vividness of Visual Imagery Depends on the Neural Overlap with Perception in Visual Areas , 2017, The Journal of Neuroscience.

[54]  G. Woodman,et al.  Electrical Stimulation of Visual Cortex Can Immediately Improve Spatial Vision , 2016, Current Biology.

[55]  S. Kosslyn,et al.  The heterogeneity of mental representation: Ending the imagery debate , 2015, Proceedings of the National Academy of Sciences.

[56]  J. Schoenen,et al.  Interictal cortical excitability in migraine: A study using transcranial magnetic stimulation of motor and visual cortices , 1998, Annals of neurology.

[57]  Colin Blakemore,et al.  Spatial Attention Changes Excitability of Human Visual Cortex to Direct Stimulation , 2007, Current Biology.

[58]  Shane E. Ehrhardt,et al.  Accounting for individual differences in the response to tDCS with baseline levels of neurochemical excitability , 2019, Cortex.

[59]  Colleen K. Loo,et al.  Inter- and Intra-individual Variability in Response to Transcranial Direct Current Stimulation (tDCS) at Varying Current Intensities , 2015, Brain Stimulation.

[60]  J. Pearson,et al.  The perceptual and phenomenal capacity of mental imagery , 2017, Cognition.

[61]  Jean-Baptiste Poline,et al.  Inverse retinotopy: Inferring the visual content of images from brain activation patterns , 2006, NeuroImage.

[62]  Satoshi Tanaka,et al.  Can electric fields explain inter-individual variability in transcranial direct current stimulation of the motor cortex? , 2019, Scientific Reports.

[63]  M. Koslowsky,et al.  tDCS polarity effects in motor and cognitive domains: a meta-analytical review , 2011, Experimental Brain Research.

[64]  M. Bikson,et al.  Electrode montages for tDCS and weak transcranial electrical stimulation: Role of “return” electrode’s position and size , 2010, Clinical Neurophysiology.

[65]  Sergey V. Fogelson,et al.  Network structure and dynamics of the mental workspace , 2013, Proceedings of the National Academy of Sciences.

[66]  Christoph Teufel,et al.  Shift toward prior knowledge confers a perceptual advantage in early psychosis and psychosis-prone healthy individuals , 2015, Proceedings of the National Academy of Sciences.

[67]  Walter Paulus,et al.  Induction of Late LTP-Like Plasticity in the Human Motor Cortex by Repeated Non-Invasive Brain Stimulation , 2013, Brain Stimulation.

[68]  E. Wassermann,et al.  Consecutive Transcranial Magnetic Stimulation: Phosphene Thresholds in Migraineurs and Controls , 2004, Headache.

[69]  J. Pearson,et al.  Closing the Mind's Eye: Incoming Luminance Signals Disrupt Visual Imagery , 2010, PloS one.

[70]  D G Pelli,et al.  The VideoToolbox software for visual psychophysics: transforming numbers into movies. , 1997, Spatial vision.

[71]  Maxim Bazhenov,et al.  Selective recruitment of cortical neurons by electrical stimulation , 2017, bioRxiv.

[72]  H. Johansen-Berg,et al.  Modulation of GABA and resting state functional connectivity by transcranial direct current stimulation , 2015, eLife.

[73]  F. Galton Inquiries into Human Faculty and Its Development , 1883 .

[74]  Til O. Bergmann,et al.  Brain State-Dependent Brain Stimulation , 2018, Front. Psychol..

[75]  J. Rothwell,et al.  Motor and phosphene thresholds: a transcranial magnetic stimulation correlation study , 2001, Neuropsychologia.

[76]  Wolf Singer,et al.  Smaller Primary Visual Cortex Is Associated with Stronger, but Less Precise Mental Imagery. , 2016, Cerebral cortex.

[77]  Anders M. Dale,et al.  An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest , 2006, NeuroImage.

[78]  J. Voke,et al.  The visual cortex. , 1983, Nursing mirror.

[79]  M. Bikson,et al.  Frontal tDCS modulates orbitofrontal reality filtering , 2014, Neuroscience.

[80]  Aaron T. Hess,et al.  Combined fMRI-MRS acquires simultaneous glutamate and BOLD-fMRI signals in the human brain , 2017, NeuroImage.

[81]  Bidirectional variability in motor cortex excitability modulation following 1 mA transcranial direct current stimulation in healthy participants , 2016, Physiological reports.

[82]  J. Pearson,et al.  Training Visual Imagery: Improvements of Metacognition, but not Imagery Strength , 2012, Front. Psychology.

[83]  Frank Tong,et al.  The Functional Impact of Mental Imagery on Conscious Perception , 2008, Current Biology.

[84]  E. Holmes,et al.  Mental Imagery: Functional Mechanisms and Clinical , 2015 .

[85]  P. Matthews,et al.  Polarity-Sensitive Modulation of Cortical Neurotransmitters by Transcranial Stimulation , 2009, The Journal of Neuroscience.

[86]  Gregor Thut,et al.  Resting electroencephalogram alpha-power over posterior sites indexes baseline visual cortex excitability , 2008, Neuroreport.

[87]  R. Malach,et al.  Negative BOLD Differentiates Visual Imagery and Perception , 2005, Neuron.

[88]  Felipe Fregni,et al.  Direct current stimulation , 2016 .

[89]  Joel Pearson,et al.  The sensory strength of voluntary visual imagery predicts visual working memory capacity. , 2014, Journal of vision.

[90]  Á. Pascual-Leone,et al.  Transcranial Magnetic Stimulation , 2014, Neuromethods.

[91]  S. Kouider,et al.  Spontaneous Activity Patterns in Primary Visual Cortex Predispose to Visual Hallucinations , 2015, The Journal of Neuroscience.

[92]  G. Coppola,et al.  Cortical Excitability in Chronic Migraine , 2012, Current Pain and Headache Reports.

[93]  A. V. van den Berg,et al.  Flash suppression and flash facilitation in binocular rivalry. , 2007, Journal of vision.

[94]  Abraham Z. Snyder,et al.  Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion , 2012, NeuroImage.

[95]  Wolf Singer,et al.  Surface area of early visual cortex predicts individual speed of traveling waves during binocular rivalry. , 2015, Cerebral cortex.

[96]  G. Cosentino,et al.  Modulation of visual cortex excitability in migraine with aura: Effects of valproate therapy , 2009, Neuroscience Letters.

[97]  Justin A. Harris,et al.  Accurate and Rapid Estimation of Phosphene Thresholds (REPT) , 2011, PloS one.

[98]  K. Welch,et al.  Transcranial magnetic stimulation confirms hyperexcitability of occipital cortex in migraine , 1998, Neurology.

[99]  A. Dale,et al.  Cortical Surface-Based Analysis II: Inflation, Flattening, and a Surface-Based Coordinate System , 1999, NeuroImage.

[100]  K. Welch Brain Hyperexcitability: The Basis for Antiepileptic Drugs in Migraine Prevention , 2005, Headache.

[101]  I. Toni,et al.  Shared Representations for Working Memory and Mental Imagery in Early Visual Cortex , 2013, Current Biology.

[102]  Jamie Near,et al.  Phosphene Perception Relates to Visual Cortex Glutamate Levels and Covaries with Atypical Visuospatial Awareness , 2015, Cerebral cortex.

[103]  J. Pearson New Directions in Mental-Imagery Research , 2014 .

[104]  Juha Silvanto,et al.  Modulation of Visual Cortical Excitability by Working Memory: Effect of Luminance Contrast of Mental Imagery , 2011, Front. Psychology.

[105]  H. Kaube,et al.  Effects of Topiramate on Migraine Frequency and Cortical Excitability in Patients with Frequent Migraine , 2008, Cephalalgia : an international journal of headache.

[106]  Stephen M. Kosslyn,et al.  Visual cortex excitability increases during visual mental imagery—a TMS study in healthy human subjects , 2002, Brain Research.

[107]  L. Westlye,et al.  Mental time travel and default-mode network functional connectivity in the developing brain , 2012, Proceedings of the National Academy of Sciences.

[108]  J W Belliveau,et al.  Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. , 1995, Science.

[109]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[110]  A. Sack,et al.  Enhanced vividness of mental imagery as a trait marker of schizophrenia , 2005 .

[111]  W. Singer,et al.  Neural Anatomy of Primary Visual Cortex Limits Visual Working Memory. , 2016, Cerebral cortex.

[112]  R. Gruetter,et al.  Metabolite concentration changes associated with positive and negative BOLD responses in the human visual cortex: A functional MRS study at 7 Tesla , 2020, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[113]  Sander Erik Bosch,et al.  Shared Neural Mechanisms of Visual Perception and Imagery , 2019, Trends in Cognitive Sciences.

[114]  E. Chronicle,et al.  Visual cortex excitability in migraine before and after valproate prophylaxis: a pilot study using TMS , 2002, European journal of neurology.

[115]  Torsten Schubert,et al.  Modulation of executive control in dual tasks with transcranial direct current stimulation (tDCS) , 2015, Neuropsychologia.