A nonlinear finite element formalism for modelling flexible and soft manipulators
暂无分享,去创建一个
Bruno Siciliano | Stanislao Grazioso | Giuseppe Di Gironimo | Valentin Sonneville | Olivier Bauchau | O. Bauchau | B. Siciliano | V. Sonneville | G. Gironimo | S. Grazioso
[1] Olivier Bruls,et al. Geometrically exact beam finite element formulated on the special Euclidean group SE(3) , 2014 .
[2] Alessandro De Luca,et al. Robots with Flexible Elements , 2016, Springer Handbook of Robotics, 2nd Ed..
[3] Gordan Jelenić,et al. Geometrically exact 3D beam theory: implementation of a strain-invariant finite element for statics and dynamics , 1999 .
[4] M. Borri,et al. Geometric invariance , 2002 .
[5] Bauchau Olivier,et al. Flexible Multibody Dynamics , 2010 .
[6] Bruno Siciliano,et al. A Singular Perturbation Approach to Control of Lightweight Flexible Manipulators , 1988, Int. J. Robotics Res..
[7] Peter Eberhard,et al. DYNAMIC ANALYSIS OF FLEXIBLE MANIPULATORS, A LITERATURE REVIEW , 2006 .
[8] W. Book. Recursive Lagrangian Dynamics of Flexible Manipulator Arms , 1984 .
[9] Olivier Bruls,et al. Lie group generalized-α time integration of constrained flexible multibody systems , 2012 .
[10] J. C. Simo,et al. A three-dimensional finite-strain rod model. Part II: Computational aspects , 1986 .
[11] Olivier Bruls,et al. Formulation of Kinematic Joints and Rigidity Constraints in Multibody Dynamics using a Lie Group Approach , 2012 .
[12] M. Géradin,et al. A beam finite element non‐linear theory with finite rotations , 1988 .
[13] Tamer M. Wasfy,et al. Computational strategies for flexible multibody systems , 2003 .
[14] J. C. Simo,et al. A finite strain beam formulation. The three-dimensional dynamic problem. Part I , 1985 .
[15] Ashitava Ghosal,et al. Comparison of the Assumed Modes and Finite Element Models for Flexible Multilink Manipulators , 1995, Int. J. Robotics Res..
[16] Peter Betsch,et al. Validation of flexible multibody dynamics beam formulations using benchmark problems , 2015 .
[17] Olivier Bruls,et al. A formulation on the special Euclidean group for dynamic analysis of multibody systems , 2014 .
[18] J. M. Selig. Geometric Fundamentals of Robotics , 2004, Monographs in Computer Science.