Global connectivity potentials for random field models

Markov random field (MRF, CRF) models are popular in computer vision. However, in order to be computationally tractable they are limited to incorporate only local interactions and cannot model global properties, such as connectedness, which is a potentially useful high-level prior for object segmentation. In this work, we overcome this limitation by deriving a potential function that enforces the output labeling to be connected and that can naturally be used in the framework of recent MAP-MRF LP relaxations. Using techniques from polyhedral combinatorics, we show that a provably tight approximation to the MAP solution of the resulting MRF can still be found efficiently by solving a sequence of max-flow problems. The efficiency of the inference procedure also allows us to learn the parameters of a MRF with global connectivity potentials by means of a cutting plane algorithm. We experimentally evaluate our algorithm on both synthetic data and on the challenging segmentation task of the PASCAL VOC 2008 data set. We show that in both cases the addition of a connectedness prior significantly reduces the segmentation error.

[1]  Nikos Komodakis,et al.  MRF Optimization via Dual Decomposition: Message-Passing Revisited , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[2]  Dimitris Samaras,et al.  Topology cuts: A novel min-cut/max-flow algorithm for topology preserving segmentation in N-D images , 2008, Comput. Vis. Image Underst..

[3]  Chih-Jen Lin,et al.  A dual coordinate descent method for large-scale linear SVM , 2008, ICML '08.

[4]  G. Nemhauser,et al.  Integer Programming , 2020 .

[5]  Nikos Komodakis,et al.  Beyond Loose LP-Relaxations: Optimizing MRFs by Repairing Cycles , 2008, ECCV.

[6]  Andrew McCallum,et al.  An Introduction to Conditional Random Fields for Relational Learning , 2007 .

[7]  Olga Veksler,et al.  Semiautomatic segmentation with compact shape prior , 2009, Image Vis. Comput..

[8]  Tomás Werner,et al.  A Linear Programming Approach to Max-Sum Problem: A Review , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  Vladimir Kolmogorov,et al.  An Analysis of Convex Relaxations for MAP Estimation , 2007, NIPS.

[10]  Vladimir Kolmogorov,et al.  Convergent Tree-Reweighted Message Passing for Energy Minimization , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Tommi S. Jaakkola,et al.  New Outer Bounds on the Marginal Polytope , 2007, NIPS.

[12]  Thorsten Joachims,et al.  Training structural SVMs when exact inference is intractable , 2008, ICML '08.

[13]  Derek Hoiem,et al.  Learning CRFs Using Graph Cuts , 2008, ECCV.

[14]  Martin J. Wainwright,et al.  MAP estimation via agreement on (hyper)trees: Message-passing and linear programming , 2005, ArXiv.

[15]  Martin J. Wainwright,et al.  MAP estimation via agreement on trees: message-passing and linear programming , 2005, IEEE Transactions on Information Theory.

[16]  Philip H. S. Torr,et al.  Efficiently solving convex relaxations for MAP estimation , 2008, ICML '08.

[17]  Vladimir Kolmogorov,et al.  What energy functions can be minimized via graph cuts? , 2002, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Greg Mori,et al.  Guiding model search using segmentation , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[19]  Pushmeet Kohli,et al.  P3 & Beyond: Solving Energies with Higher Order Cliques , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[20]  Vladimir Kolmogorov,et al.  On partial optimality in multi-label MRFs , 2008, ICML '08.

[21]  Andrew McCallum,et al.  Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data , 2001, ICML.

[22]  Luc Van Gool,et al.  Speeded-Up Robust Features (SURF) , 2008, Comput. Vis. Image Underst..

[23]  Yair Weiss,et al.  MAP Estimation, Linear Programming and Belief Propagation with Convex Free Energies , 2007, UAI.

[24]  Benno Schwikowski,et al.  Discovering regulatory and signalling circuits in molecular interaction networks , 2002, ISMB.

[25]  Jitendra Malik,et al.  Learning a classification model for segmentation , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[26]  Yair Weiss,et al.  Linear Programming Relaxations and Belief Propagation - An Empirical Study , 2006, J. Mach. Learn. Res..

[27]  Tommi S. Jaakkola,et al.  Tightening LP Relaxations for MAP using Message Passing , 2008, UAI.

[28]  Tommi S. Jaakkola,et al.  Fixing Max-Product: Convergent Message Passing Algorithms for MAP LP-Relaxations , 2007, NIPS.

[29]  Pushmeet Kohli,et al.  Robust Higher Order Potentials for Enforcing Label Consistency , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[30]  Tomás Werner,et al.  High-arity interactions, polyhedral relaxations, and cutting plane algorithm for soft constraint optimisation (MAP-MRF) , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[31]  Vladimir Kolmogorov,et al.  Graph cut based image segmentation with connectivity priors , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[32]  John N. Tsitsiklis,et al.  Introduction to linear optimization , 1997, Athena scientific optimization and computation series.

[33]  Thomas Hofmann,et al.  Large Margin Methods for Structured and Interdependent Output Variables , 2005, J. Mach. Learn. Res..

[34]  Vladimir Kolmogorov,et al.  An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision , 2001, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[35]  David K. Smith Theory of Linear and Integer Programming , 1987 .

[36]  Christoph H. Lampert,et al.  Learning to Localize Objects with Structured Output Regression , 2008, ECCV.

[37]  Daniel P. Huttenlocher,et al.  Learning for stereo vision using the structured support vector machine , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[38]  Pushmeet Kohli,et al.  Exact inference in multi-label CRFs with higher order cliques , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[39]  Jianguo Zhang,et al.  The PASCAL Visual Object Classes Challenge , 2006 .